【题目】如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫作△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证: △ABP∽△BCP;
②若PA=3,PC=4,求PB的长;
(2)如图②,已知锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于点P,连接AP.
①求∠CPD的度数;
②求证:点P为△ABC的费马点.
【答案】(1)见解析 (2)60° (3)见解析
(1)①证明:∵∠PAB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC.又∵∠APB=∠BPC=120°,∴△ABP∽△BCP
②解:由①可知△ABP∽△BCP,∴ ,∴PB2=PA·PC=12,∴PB=2.
(2)①解:如图,∵△ABE和△ACD是正三角形,∴AE=AB,AC=AD,∠EAB=∠5=60°.∵∠EAC=∠EAB+∠BAC,∠BAD=∠BAC+∠5,∴∠EAC=∠BAD,∴△ACE≌△ADB,∴∠1=∠2.∵∠3=∠4,∴∠CPD=∠5=60°.
②证明:由①可知∠1=∠2,∠3=∠4,∴△ADF∽△PCF,∴AF∶PF=DF∶CF,∴AF∶DF=PF∶CF.∵∠AFP=∠CFD,∴△AFP∽△DFC,∴∠APF=∠ACD=60°.由①可知∠CPD=60°,∴∠APC=∠CPD+∠APF=120°,∠BPC=180°-∠CPD=120°,∴∠APB=360°-∠BPC-∠APC=120°,∴点P为△ABC的费马点.
【解析】试题分析: ①由费马点的定义可知∠APB=∠BPC=120°,然后再证明∠PAB=∠PBC即可证明△ABP∽△BCP ②由①可知△ABP∽△BCP,得到,即可求出的长.
如图所示:①首先证明△ACE≌△ADB,则∠1=∠2,由∠3=∠4可得到∠CPD=∠5=60°.
②由∠CPD=60°.可证明∠BPC=180°-∠CPD=120°,然后证明△ADF∽△PCF,由相似三角形的性质和判定定理再证明△AFP∽△DFC,故此可得到∠APF=∠ACD=60°,然后可求得∠APC=∠CPD+∠APF=120°,接下来可求得∠APB=360°-∠BPC-∠APC=120°,即可说明.
试题解析:
(1)①∵∠PAB+∠PBA=180°-∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC.
又∵∠APB=∠BPC=120°,∴△ABP∽△BCP
②由①可知△ABP∽△BCP,
∴
∴PB2=PA·PC=12,
(2)①如图,∵△ABE和△ACD是正三角形,
∴AE=AB,AC=AD,∠EAB=∠5=60°.
∵∠EAC=∠EAB+∠BAC,∠BAD=∠BAC+∠5,
∴∠EAC=∠BAD,
∴△ACE≌△ADB,
∴∠1=∠2.
∵∠3=∠4,
∴∠CPD=∠5=60°.
②由①可知∠1=∠2,∠3=∠4,
∴△ADF∽△PCF,
∴AF∶PF=DF∶CF,
∴AF∶DF=PF∶CF.
∵∠AFP=∠CFD,
∴△AFP∽△DFC,
∴∠APF=∠ACD=60°.
由①可知∠CPD=60°,
∴∠APC=∠CPD+∠APF=120°,
∠BPC=180°-∠CPD=120°,
∴∠APB=360°-∠BPC-∠APC=120°,
∴点P为△ABC的费马点.
科目:初中数学 来源: 题型:
【题目】观察下列分解因式的过程:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2(先加上a2,再减去a2)
=(x+a)2﹣4a2(运用完全平方公式)
=(x+a+2a)(x+a﹣2a )(运用平方差公式)
=(x+3a)(x﹣a)
像上面那样通过加减项配出完全平方式后再把二次三项式分解因式的方法,叫做配方法.
请你用配方法分解因式:m2﹣4mn+3n2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com