分析 (1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
解答 解:(1)∵A(-2,1)在反比例函数y=$\frac{m}{x}$的图象上,
∴1=$\frac{m}{-2}$,解得m=-2.
∴反比例函数解析式为y=$\frac{-2}{x}$,
∵B(1,n)在反比例函数h上,
∴n=-2,
∴B的坐标(1,-2),
把A(-2,1),B(1,-2)代入y=kx+b得$\left\{\begin{array}{l}{1=-2k+b}\\{-2=k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=-1}\end{array}\right.$,
∴一次函数的解析式为y=-x-1;
(2)由图象知:当x<-2或0<x<1时,一次函数的值大于反比例函数.
点评 本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{{a}+1}$ | B. | $\sqrt{\frac{1}{2}}$ | C. | $\sqrt{8}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com