精英家教网 > 初中数学 > 题目详情
(2012•娄底)如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=
3.42
3.42
米.
分析:首先根据题意易得△ABO∽△NAM,然后根据相似三角形的对应边成比例,即可求得答案.
解答:解:根据题意得:AO⊥BM,NM⊥BM,
∴AO∥NM,
∴△ABO∽△NBM,
OA
NM
=
OB
BM

∵OA=1.52米,OB=4米,OM=5米,
∴BM=OB+OM=4+5=9(米),
1.52
NM
=
4
9

解得:NM=3.42(米),
∴林丹起跳后击球点N离地面的距离NM为3.42米.
故答案为:3.42.
点评:此题考查了相似三角形的应用.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用,注意把实际问题转化为数学问题求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•娄底)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,
3
≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值.

查看答案和解析>>

同步练习册答案