【题目】如图,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D',边B'C'交CD于点E.若正方形ABCD的边长为3,则DE的长为_____.
科目:初中数学 来源: 题型:
【题目】今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元.
(1)A 超市 11 月排骨的进货价为年初排骨售价的倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?
(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a%,且储备排骨的销量占总销量的,两种排骨销售的总金额比 11 月 10 日提高了a%,求 a 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在解方程(x2﹣2x)2﹣2(x2﹣2x)-3=0时,设x2﹣2x=y,则原方程可转化为y2﹣2y-3=0,解得y1=-1,y2=3,所以x2﹣2x=-1或x2﹣2x=3,可得x1=x2=1,x3=3,x4=-1.我们把这种解方程的方法叫做换元法.对于方程:x2+﹣3x﹣=12,我们也可以类似用换元法设x+ =y,将原方程转化为一元二次方程,再进一步解得结果,那么换元得到的一元二次方程式是( )
A.y2﹣3y﹣12=0B.y2+y﹣8=0
C.y2﹣3y﹣14=0D.y2﹣3y﹣10=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国贸商店服装柜在销售中发现:“宝乐牌”童装平均每天可以售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.
(1)若每件童装降价5元,则商场盈利多少元?
(2)若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为lcm/s.连接PQ,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ⊥AC?
(2)设△APQ的面积为S,求S与t的函数关系式,并求出当t为何值时,S取得最大值?S的最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点H,E,F分别在边AB,BC,CD上,AE⊥HF于点G.
(1)如图1,求证:AE=HF;
(2)如图2,延长FH,交CB的延长线于M,连接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如图3,若AB=2,BH=DF,将线段HF绕点F顺时针旋转90°至线段MF,连接AM,则线段AM的最小值为 .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形中,=,=,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果、分别从、同时出发,当点运动到点时,两点停止运动.设运动时间为秒.
(1)填空:______=______,______=______(用含t的代数式表示);
(2)当为何值时,的长度等于?
(3)是否存在
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料,然后解答问题.
材料:从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
例如:如图,AD把分成与,若是等腰三角形,且∽,那么AD就是的完美分割线.
解答下列问题:
如图,在中,若∠B=40°,AD是的完美分割线,且是以AD为底边的等腰三角形,则____度;
在中,若,,AD是的完美分割线,是等腰三角形,则____;
如图,在中,AD平分,求证AD是的完美分割线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com