精英家教网 > 初中数学 > 题目详情
9.按要求完成下列题目.
(1)求:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$的值.
对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成$\frac{1}{n(n+1)}$的形式,而$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,这样就把$\frac{1}{n(n+1)}$一项(分)裂成了两项.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$的值.
(2)若$\frac{1}{n(n+1)(n+2)}$=$\frac{A}{n(n+1)}$+$\frac{B}{(n+1)(n+2)}$
①求:A、B的值:
②求:$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{n(n+1)(n+2)}$的值.

分析 (1)根据题目的叙述的方法即可求解;
(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解;
②根据$\frac{1}{n(n+1)(n+2)}$=$\frac{1}{2}$•$\frac{1}{n(n+1)}$-$\frac{1}{2}$•$\frac{1}{(n+1)(n+2)}$把所求的每个分式化成两个分式的差的形式,然后求解.

解答 解:(1)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$
=1-$\frac{1}{2017}$
=$\frac{2016}{2017}$;
(2)①∵$\frac{A}{n(n+1)}$+$\frac{B}{(n+1)(n+2)}$
=$\frac{(A+B)n+2A}{n(n+1)(n+2)}$=$\frac{1}{n(n+1)(n+2)}$,
∴$\left\{\begin{array}{l}{A=\frac{1}{2}}\\{A+B=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{A=\frac{1}{2}}\\{B=-\frac{1}{2}}\end{array}\right.$.
∴A和B的值分别是$\frac{1}{2}$和-$\frac{1}{2}$;
②∵$\frac{1}{n(n+1)(n+2)}$=$\frac{1}{2}$•$\frac{1}{n(n+1)}$-$\frac{1}{2}$•$\frac{1}{(n+1)(n+2)}$
=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+2}$)
∴原式=$\frac{1}{2}$•$\frac{1}{1×2}$-$\frac{1}{2}$•$\frac{1}{2×3}$+$\frac{1}{2}$•$\frac{1}{2×3}$-$\frac{1}{2}$•$\frac{1}{3×4}$+…+$\frac{1}{2}$•$\frac{1}{n(n+1)}$-$\frac{1}{2}$•$\frac{1}{(n+1)(n+2)}$
=$\frac{1}{2}$•$\frac{1}{1×2}$-$\frac{1}{2}$•$\frac{1}{(n+1)(n+2)}$
=$\frac{1}{4}$-$\frac{1}{2(n+1)(n+2)}$
=$\frac{n(n+3)}{4(n+1)(n+2)}$.

点评 本题考查了分式的化简求值,正确理解$\frac{1}{n(n+1)(n+2)}$=$\frac{1}{2}$•$\frac{1}{n(n+1)}$-$\frac{1}{2}$•$\frac{1}{(n+1)(n+2)}$是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.如图,△ABC∽△DEF,AB=3,DE=2,若△DEF的周长为8,则△ABC的周长为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算
(1)(-$\frac{1}{2}$xy)3
(2)-5x(2x-3y)
(3)(x+2y)(3y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列方程中,解为x=-2的方程是(  )
A.2x+5=1-xB.3-2(x-1)=7-xC.x-2=-2-xD.1-$\frac{1}{4}$x=$\frac{1}{4}$x

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.点P(3,-2)到x轴的距离为2个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列调查方法合适的是(  )
A.为了了解冰箱的使用寿命,采用普查的方式
B.为了了解全国中学生的视力状况,采用普查的方式
C.为了了解人们保护水资源的意识,采用抽样调查的方式
D.对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在双曲线y=$\frac{{k}^{2}+3}{x}$上有三点A(x1,y1),B(x2,y2),C(x3,y3),已知x1<x2<0<x3,则y1,y2,y3的大小关系是y2<y1<y3.(用“<”连接)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图在Rt△ABC中,∠BAC=90°.
(1)按要求作出图形:①延长BC到点D,使CD=BC;
②延长CA到点E,使AE=2CA;
③连接AD,BE.
(2)猜想(1)中线段 AD与BE的大小关系,并写出证明思路.

查看答案和解析>>

同步练习册答案