解:(1)成立;
∵△ABC中BF、CF平分∠ABC、∠ACB,
∴∠1=∠2,∠5=∠4.
∵DE∥BC,∴∠2=∠3,∠4=∠6.
∴∠1=∠3,∠6=∠5.
根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.
∴DE=DF+EF=BD+CE.
故成立.
(2)∵BF分∠ABC,
∴∠DBF=∠FBC.
∵DF∥BC,∴∠DFB=∠FBC.
∴∠ABF=∠DFB,
∴BD=DF.
∵CF平分∠ACG,
∴∠ACF=∠FCG.
∵DF∥BC,
∴∠DFC=∠FCG.
∴∠ACF=∠DFC,
∴CE=EF.
∵EF+DE=DF,即DE+EC=BD.
分析:(1)根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.
(2)同(1),只要求出△BDF与△ECF是等腰三角形即可.
点评:本题考查了等腰三角形性质及平行线的性质与角平分线的性质;一般是利用等腰(等边)三角形的性质得出相等的边,进而得出结论是解答本题的基本思路.