精英家教网 > 初中数学 > 题目详情
(2013•盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
分析:(1)利用待定系数法求出抛物线的解析式;
(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标;
(3)本问利用中心对称的性质求解.平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与?ODEF对称中心的直线平分?ODEF的面积.
解答:解:(1)∵点A(-1,0)、B(3,0)在抛物线y=ax2+bx+3上,
a-b+3=0
9a+3b+3=0

解得a=-1,b=2,
∴抛物线的解析式为:y=-x2+2x+3.

(2)在抛物线解析式y=-x2+2x+3中,令x=0,得y=3,∴C(0,3).
设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:
3k+b=0
b=3

解得k=-1,b=3,
∴y=-x+3.
设E点坐标为(x,-x2+2x+3),则P(x,0),F(x,-x+3),
∴EF=yE-yF=-x2+2x+3-(-x+3)=-x2+3x.
∵四边形ODEF是平行四边形,
∴EF=OD=2,
∴-x2+3x=2,即x2-3x+2=0,
解得x=1或x=2,
∴P点坐标为(1,0)或(2,0).

(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与?ODEF对称中心的直线平分?ODEF的面积.

①当P(1,0)时,
点F坐标为(1,2),又D(0,2),
设对角线DF的中点为G,则G(
1
2
,2).
设直线AG的解析式为y=kx+b,将A(-1,0),G(
1
2
,2)坐标代入得:
-k+b=0
1
2
k+b=2

解得k=b=
4
3

∴所求直线的解析式为:y=
4
3
x+
4
3

②当P(2,0)时,
点F坐标为(2,1),又D(0,2),
设对角线DF的中点为G,则G(1,
3
2
).
设直线AG的解析式为y=kx+b,将A(-1,0),G(1,
3
2
)坐标代入得:
-k+b=0
k+b=
3
2

解得k=b=
3
4

∴所求直线的解析式为:y=
3
4
x+
3
4

综上所述,所求直线的解析式为:y=
4
3
x+
4
3
或y=
3
4
x+
3
4
点评:本题是二次函数的综合题型,考查了二次函数的图象与性质、待定系数法、平行四边形的性质、中心对称的性质等知识点.第(3)问中,特别注意要充分利用平行四边形中心对称的性质,只要求出其对称中心的坐标,即可利用待定系数法求出所求直线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是
300π
300π
cm2.(不考虑接缝等因素,计算结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.
(1)如图?,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;
(2)如图?,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.

查看答案和解析>>

同步练习册答案