精英家教网 > 初中数学 > 题目详情
6.计算:8+(-3)的结果为5.

分析 绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.

解答 解:8+(-3)=5.
故答案为:5.

点评 考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.将二次函数y=-x2+3的图象向左平移1个单位,再向下平移3个单位后,所得图象的函数表达式是y=x2+2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某飞机模型的机翼形状如图所示,其中AB∥DC,∠BAE=90°,根据图中的数据求CD的长?(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.“低碳环保”已经成为一种生活理念,同时也带来无限商机.某高科技发展公司投资2000万元成功研制出一种市场需求量较大的低碳高科技产品.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).(年获利=年销售额-生产成本-投资)
(1)试写出z与x之间的函数关系式;
(2)请通过计算说明,到第一年年底,当z取最大值时,销售单价x定为多少?此时公司是盈利了还是亏损了?
(3)若该公司计划到第二年年底获利不低于1130万元,请借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值$\frac{x+2}{x+1}$÷($\frac{{x}^{2}-1}{x+1}$-$\frac{3}{x+1}$),其中x2-2x-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系xOy中,一次函数y=$\frac{5}{4}$x+m(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C,以直线x=1为对称轴的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B
(1)求m的值及抛物线的函数表达式;
(2)是否存在抛物线上一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若存在,请说明理由;
(3)若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问$\frac{{M}_{1}P•{M}_{2}P}{{M}_{1}{M}_{2}}$是否为定值,如果是,请求出结果,如果不是请说明理由.
(参考公式:在平面直角坐标之中,若A((x1,y1),B(x2,y2),则A,B两点间的距离为AB=${\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}}^{\;}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为$\frac{{6\sqrt{5}}}{5}$,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若点A(1,2)与点B关于点P(0,-3)对称,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.
(1)求证:AF=BE,并求∠APB的度数;
(2)若AE=2,试求AP•AF的值.

查看答案和解析>>

同步练习册答案