精英家教网 > 初中数学 > 题目详情
(1)如图(1),在正方形ABCD中,对角线AC、BD相交于点O,易知AC⊥BD,
CO
AC
=
1
2

(2)如图(2),若点E是正方形ABCD的边CD的中点,即
DE
DC
=
1
2
,过D作DG⊥AE,分别交AC、BC于点F、G.求证:
CF
AC
=
1
3

(3)如图(3),若点P是正方形ABCD的边CD上的点,且
DP
DC
=
1
n
(n为正整数),过点D作DN⊥AP,分别交AC、BC于点M、N,请你先猜想CM与AC的比值是多少,然后再证明你猜想的结论.
(2)证明:∵四边形ABCD为正方形,
∴AD=DC,
∴∠1+∠ADG=90°,
又∵DG⊥AE,
∴∠2+∠ADG=90°,
∴∠1=∠2,
∵AD=DC,∠1=∠2,∠ADE=∠DCG=90°,
∴△ADE≌△DCG(ASA),
∴CG=DE,
又∵E为BC中点,
∴CG=DE=
1
2
DC,
∴CG=
1
2
AD,
∵BCAD,
CG
AD
=
CF
AF
=
1
2

CF
AC
=
1
3
;(8分)

(3)猜想
CM
AC
=
1
n+1
;(10分)
同理可证
CN
BC
=
DP
DC
=
1
n

又∵BCAD,
CM
AM
=
CN
AD
=
1
n

CM
AC
=
1
n+1
.(14分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D.
(1)尺规作图:(保留作图痕迹,不写作法)
①作△ABC外角∠CAM的平分线AN.
②过C作CE⊥AN,垂足为点E.
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ADBC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.
(1)求证:四边形EFGH为正方形;
(2)若AD=1,BC=3,求正方形EFGH的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为(  )
A.2cm,2cm,2cmB.3cm,3cm,3cm
C.4cm,4cm,4cmD.2cm,3cm,5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=3
2
,则MN的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF和正方形BCMN连接FN,EC.
求证:FN=EC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的中心为O,AB=8,点E,F分别是线段AD,CD上的动点(与AD,CD的交点不重合),且AE=a,CF=b.
(1)求正方形ABCD的周长;
(2)若四边形EOFD的面积为10,求代数式(a-b)2+4(a-1)(b-1)的值.
(3)当OE⊥OF时,求证:EF2=a2+b2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(  )
A.4B.
3
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

四组图形中成中心对称的有(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

同步练习册答案