精英家教网 > 初中数学 > 题目详情
如图,等腰三角形ABC中,AB=BC,⊙O为△ABC的外接圆,CD为∠ACB的平分线,CD的延精英家教网长线交⊙O于N,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,NE的延长线交⊙O于M.
求证:(Ⅰ)MN∥AC;
(Ⅱ)BE=FD.
分析:(1)根据垂径定理,可得CI=NI,通过求证△ECI≌△ENC,推出∠ECI=∠ENI,结合角平分线的性质,通过等量代换,即可推出∠ENI=∠NCA,即可推出结论,(2)连接BN,MC,过E作MC垂线EG,G为垂足.过F作CN垂线,H为垂足,
,根据(1)所得的结论,推出△AEQ为等腰三角形,再由等腰三角形BAC,MN∥AC,推出
MB
=
BN
,BE=BQ,可得CE平分∠MCN,然后,通过求证四边形EFHI为矩形,结合角平分线上的点的性质,即可得GE=EI=FH,再通过求证△MEG≌△DFH和△BNE≌△MCE,即可推出BE=ME,ME=FD,通过等量代换即得,FD=BE.
解答:精英家教网证明:(1)如图,设直线OE与CM交于点I,
∵OI⊥NC,
∴CI=NI,
∵在△ECI和△ENI中,
EI=EI
∠EIC=∠EIN
CI=NI

∴△ECI≌△ENC(SAS),
∴∠ECI=∠ENI,
∵CN平分∠BCA,
∴∠ECI=∠NCA,
∴∠ENI=∠NCA,
∴MN∥AC,

(2)如图,连接BN,MC,过E作MC垂线EG,G为垂足.过F作CN垂线,H为垂足,
∵EF∥CN,EI⊥NC,
∴IE⊥EF,
∴四边形EFHI为矩形,
∴EI=FH,
∵AB=BC,
BC
=
AB

∵MN∥AC,
MC
=
NA

MB
=
BN
,BE=BQ,
∴∠BCN=∠MCB,
∴CE平分∠MCN,
∴EG=EI,
∴EG=FH,
∵BCN=ENC,
∴∠MCE=∠ECN=∠ENC,
∵∠GEC=90°-∠MCE,∠NPH=90°-∠MNC,
∴∠GEC=∠NPH,即∠GEC=∠FPQ,
∵BE=BQ,
∴∠BEQ=∠BQE,即,∠MEC=∠BQE,
∵∠MEG=∠MEC-∠GEC,∠DFH=∠BQE-∠FPQ,
∴∠MEG=∠DFH,
∵在△MEG和△DFH中,
∠MEG=∠DFH
∠MGE=∠DHF
GE=FH

∴△MEG≌△DFH(AAS),
∴ME=FD,
∵在△BNE和△MCE中,
∠MEC=∠BEN
EC=EN
∠MCE=∠BNE

∴△BNE≌△MCE(ASA),
∴BE=ME,
∴BE=FD.
点评:本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了垂径定理以及分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC的顶角为120°,底边BC=
3
2
,则腰长AB为(  )
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形与正三角形的形状有着差异,我们把它与正三角形的接近程度称为等腰三角形的“正度”,在研究“正度”时,应符合下面四个条件:①“正度”的值是非负数;②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
设等腰三角形的底和腰分别为a,b,底角和顶角分别为α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且当两个等腰三角形相似时,它们的底角相等,显然,它们的“正度”|sinα-
3
2
|
也相等,当α=60°时,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因为此时正三角形的正度是1!
解答下列问题:
甲同学认为:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同学认为:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教网(1)他们的说法合理吗?为什么?
(2)对你认为不合理的方案加以改进,使其合理;
(3)请你再给出一种衡量等腰三角形“正度”的合理的表达式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形ABC(AB=AC)的底角为50°,绕点A逆时针旋转一定角度后得△AB′C′,那么△AB′C′绕点A旋转
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步练习册答案