D
分析:分两种情况推论:当x≤3,方程变为:x2-(a+4)x+a+3=0①,△=(a+4)2-4(a+3)=(a+2)2,x1=1,x2=a+3;当x>3,方程变为:x2+(a-8)x+15-5a=0②,△=(a-8)2-4(15-5a)=(a+2)2,x1=5,x2=3-a;根据原方程有两个不同的实数根,再推论:当a+2=0,方程①,②都有等根,满足条件;当a+3>3,且3-a<3,即a>0,方程①,②都只有一个根,也满足条件.由此得到实数a的取值范围.
解答:当x≤3,方程变为:x2-(a+4)x+a+3=0①,△=(a+4)2-4(a+3)=(a+2)2,x1=1,x2=a+3;
当x>3,方程变为:x2+(a-8)x+15-5a=0②,△=(a-8)2-4(15-5a)=(a+2)2,x1=5,x2=3-a;
∵原方程有两个不同的实数根,
∴方程①,②都有等根,即a+2=0,a=-2;
或方程①,②都只有一个根,即a+3>3,且3-a<3,解得a>0,
所以实数a的取值范围是a>0或a=-2.
故选D.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了绝对值的含义和解一元二次方程.