精英家教网 > 初中数学 > 题目详情
如图,点A和点B分别是棱长为20cm的正方体盒子上两条棱的中点,一只昆虫沿盒子的表面由A处爬行到B处,所走的最短路程是多少?
考点:平面展开-最短路径问题
专题:
分析:根据题意画出图形,进而利用勾股定理得出即可.
解答:解:由于是正方体盒子上,故长度只有一种情况,如图所示:
∵点A和点B分别是棱长为20cm的正方体盒子上两条棱的中点,
∴AC=10cm,BC=30cm,
AB=
AC2+BC2
=
102+302
=10
10
(cm),
答:所走的最短路程是10
10
cm.
点评:此题主要考查了平面展开图最短路径,正确画出平面图形是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则(  )
A、AB<CD
B、AB>CD
C、AB=CD
D、以上都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=-x2+2(m-2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.
(1)求m的值及顶点D的坐标.
(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;
(3)当-
1
2
≤x≤n时,函数y所取得的最大值为4,最小值为1
3
4
,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在锐角△ABC中,tanB=
3
4
,AB=5,BC=6,求△ABC的内切圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠C=90°,以CD为直径的圆与AB相切,AB=6,那么梯形ABCD的面积是(  )
A、2B、3
C、4D、不能确定,与∠B的大小有关

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,矩形OABC的对角线AC=10,OA、OC是方程x2-2(k+3)+12k=0的两根,且OA>OC,点D在BC上,直线l平分矩形OABC的面积.
(1)若S△ACD=6时,求D点坐标;
(2)若直线l经过点D,求直线l的解析式;
(3)是否存在直线l,使l与坐标轴围成的三角形与△ABD相似?如果存在,直接写出直线l的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,我们知道,若点C将切断AB分成两部分,且
AC
AB
=
BC
AC
,则称点C为线段AB的黄金分割点.类似地,我们可以给出“黄金分割点”的定义:若直线l将一个面积为S的图形分成两部分S1,S2,且
S1
S
=
S2
S1
,则称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,若点D为AB边上的黄金分割点(靠近B),则直线CD是△ABC的黄金分割线吗?为什么?
(2)如图3,在△ABC中,D为AB的黄金分割点(靠近B),过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,则直线EF也为△ABC的黄金分割线,请你说明理由.
(3)如图4,四边形ABCD中,点E为AC的一个黄金分割点(靠近A),请你画出四边形ABCD的一条黄金分割线,简单写出画法步骤,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

2
3-
7
的整数部分为a,小数部分为b,求a2+3ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

11
的小数部分是a,则(6+a)a的值为(  )
A、4B、16C、2D、5

查看答案和解析>>

同步练习册答案