精英家教网 > 初中数学 > 题目详情
实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为10.0m(含拱圈厚度和拉杆长度),横向分跨CD为40.0m.
(1)试在示意图(图(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;
(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)
(1)如右图,以A为坐标原点,BA所在直线为y轴建立直角坐标系xAy,
因拱圈外沿所在的抛物线过原点,且以y轴为对称轴,
故可设抛物线解析式为:y=ax2
由题意抛物线过点D(20,-10),代入得:a=-
1
40

故拱圈外沿抛物线的解析式为:y=-
1
40
x2


(2)设N(-10,k),则:
k=-
1
40
×(-10)2=-2.5(m)

∴MN=10+k=7.5(m),
∴PM=MN+PN≥7.5+1.1=8.6(m).
即路灯支柱PM的最低高度为8.6米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm2,设金色纸边的宽度为xcm2,那么y关于x的函数是(  )
A.y=(60+2x)(40+2x)B.y=(60+x)(40+x)
C.y=(60+2x)(40+x)D.y=(60+x)(40+2x)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,某地一城墙门洞呈抛物线形,已知门洞的地面宽度AB=12米,两侧距地面5米高C、D处各安装一盏路灯,两灯间的水平距离CD=8米,
(1)求这个门洞的高度______;
(2)现有体宽均约为0.5水,身高约为1.6米的20名同学想要手挽手成一排横向通过该城门,请你测算,他们能否通过?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

涪陵榨菜是重庆市农村经济中产销规模最大、品牌知名度最高、辐射带动能力最强的特色支柱产业.某知名榨菜企业为顺应市场需求推出了“五味榨菜”礼盒,成本为20元/盒.年销售量y(万盒)与售价x(元/盒)之间满足一次函数关系,其图象如图所示.
(1)结合图象求y与x之间的函数关系;
(2)求“五味榨菜”礼盒的年获利w(万元)与x之间的函数关系,并求当售价为多少元时可以获得最大利润,最大利润是多少万元?
(3)去年,公司一直按照(2)中获得最大利润时的售价进行销售,今年在保持售价不变的基础上,公司发力品牌营销,决定拿出部分资金进行广告宣传.经调查发现:①每年有11万盒产品供给固定客户,其余产品全部被潜在客房购买;②若广告投入为a万元,则潜在客户的购买量将是去年购买量的m倍,则m=-
1
900
(a-30)2+2
;③受公司生产规模及资金限制,公司的年产量不超过28万盒,广告投入不超过32万元.问公司在广告上投入多少资金可以使公司获得最大利润,最大利润为多少万元?(利润=总销售额-总成本-广告费)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明代表班级参加校运会的铅球项目,他想:“怎样才能将铅球推得更远呢”,于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿与水平线成30°、45°、60°方向推了三次.铅球推出后沿抛物线形运动.如图,小明推铅球时的出手点距地面2m,以铅球出手点所在竖直方向为y轴、地平线为x轴建立直角坐标系,分别得到的有关数据如下表:
铅球的方向与水平线的夹角300450600
铅球运行所得到的抛物线解析式y1=-0.06(x-3)2+2.5y2=
______(x-4)2+3.6
y3=-0.22(x-3)2+4
估测铅球在最高点的坐标P1(3,2.5)P2(4,3.6)P3(3,4)
铅球落点到小明站立处的水平距离9.5m

______m
7.3m
(1)请你求出表格中两横线上的数据,写出计算过程,并将结果填入表格中的横线上;
(2)请根据以上数据,对如何将铅球推得更远提出你的建议.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为xm.
(1)要使鸡场面积最大,鸡场的长度应为多少m?
(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?
比较(1)(2)的结果,你能得到什么结论?

查看答案和解析>>

同步练习册答案