分析 (1)连接OC,由AB是⊙O的直径,得到∠ACB=90°,即∠1+∠3=90°.根据等腰三角形的性质得到∠1=∠2.得到∠DCB+∠3=90°.于是得到结论;
(2)根据三角函数的定义得到OD=5,AD=8.根据圆周角定理得到∠2=∠4.推出OC∥AF.根据相似三角形的性质即可得到结论.
解答 (1)证明:连接OC,BC,
∵AB是⊙O的直径,
∴∠ACB=90°,即∠1+∠3=90°.
∵OA=OC,
∴∠1=∠2.
∵∠DCB=∠BAC=∠1.
∴∠DCB+∠3=90°.
∴OC⊥DF.
∴DF是⊙O的切线;
(2)解:在Rt△OCD中,OC=3,sinD=$\frac{3}{5}$.
∴OD=5,AD=8.
∵$\widehat{CE}$=$\widehat{BC}$,
∴∠2=∠4.
∴∠1=∠4.
∴OC∥AF.
∴△DOC∽△DAF.
∴$\frac{OC}{AF}=\frac{OD}{AD}$.
∴AF=$\frac{24}{5}$.
点评 本题考查了切线的判定,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}5x+8y=198\\ x+y=30\end{array}\right.$ | B. | $\left\{\begin{array}{l}8x+5y=198\\ x+y=30\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}x+y=198\\ 8x+5y=30\end{array}\right.$ | D. | $\left\{\begin{array}{l}x+y=198\\ 5x+8y=30\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 无数个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com