在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:BE=BF;
(2)若∠CAE=30°,求∠ACF度数.
20、
(1)证明:在Rt△ABE和Rt△ADF中
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=BF; ------------------ 4分
(2)解:∵AB=CB,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠CAE=30°,
∴∠BAE=45°﹣30°=15°,
∵Rt△ABE≌Rt△ADF,
∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠BCA=15°+45°=60°.
科目:初中数学 来源: 题型:
如图,已知二次函数的图象经过
A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D
两点(点C在对称轴的左侧),过点C,D作x轴的垂线,
垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系中,⊙A,⊙B的圆心坐标分别是A(3,0),B(0,4),若这两圆的半径分别是3,4,则这两圆的位置关系是( )
| A. | 内含 | B. | 相交 | C. | 外切 | D. | 外离 |
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:如图所示,抛物线y= -x2+bx+c与x轴的两个交点分别为 A(1,0),B(3,0)。
(1)求抛物线的解析式;
所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小。若存在,求出点M的坐标;若不存在,请说明理由。
参考答案
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com