精英家教网 > 初中数学 > 题目详情
16.(1)如图1,在⊙O中,AC∥OB,∠BAO=25°,求∠BOC的度数.
(2)已知:如图2,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.

分析 (1)先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论;
(2)由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.

解答 解:(1)∵OA=OB,∠BAO=25°,
∴∠B=25°.
∵AC∥OB,
∴∠B=∠CAB=25°,
∴∠BOC=2∠CAB=50°;
(2)∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∵EF⊥DF,
∴∠EFD=90°,
∴∠EFB+∠CFD=90°,
∵∠EFB+∠BEF=90°,
∴∠BEF=∠CFD,
在△BEF和△CFD中,
$\left\{\begin{array}{l}{∠BEF=∠CFD}\\{BCF}\\{∠B=∠C}\end{array}\right.$,
∴△BEF≌△CFD(ASA),
∴BF=CD.

点评 此题考查了圆周角定理,矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,正方形ABCD边长为2,以BC为直径的半圆O交对角线BD于E,则阴影部分面积为(结果保留π)$\frac{3}{2}$-$\frac{π}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.分式方程:$\frac{x}{x-3}$+$\frac{1}{3-x}$=2的解为x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各数中,相反数为4的是(  )
A.4B.-4C.0.4D.0.25

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.
(1)如果这个多边形是五边形,请求出这个外角的度数;
(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,△ABC和△DEF的各顶点分别在双曲线y=$\frac{1}{x}$,y=$\frac{2}{x}$,y=$\frac{3}{x}$在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC-S△DEF=(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{5}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线y=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x+c与y轴交于点A(0,-$\sqrt{3}$),与x轴交于B、C两点,其对称轴与x轴交于点D,直线l∥AB且过点D.
(1)求AB所在直线的函数表达式;
(2)请你判断△ABD的形状并证明你的结论;
(3)点E在线段AD上运动且与点A、D不重合,点F在直线l上运动,且∠BEF=60°,连接BF,求出△BEF面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.小明用如图所示的方法画出了与△ABC全等的△DEF,他的具体画法是:①画射线DM,在射线DM上截取DE=BC;②以点D为圆心,BA长为半径画弧,以点E为圆心,CA长为半径画弧,画弧相交于点F;③联结FD,FE;这样△DEF就是所要画的三角形,小明这样画图的依据是全等三角形判定方法中的(  )
A.边角边B.角边角C.角角边D.边边边

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD、四边形EFGH(顶点是网格线的交点)和格点O.
(1)将四边形ABCD绕点O顺时针旋转90°,画出旋转得到的四边形A′B′C′D′;
(2)平移四边形ABCD,使其与四边形EFGH的一条边重合,并组成中心对称图形(但不是轴对称图形),画出这个图形,并指出你是怎样平移的.

查看答案和解析>>

同步练习册答案