精英家教网 > 初中数学 > 题目详情
12.因式分解:
(1)a3-4ab2
(2)(x2+x)2-(x+1)2

分析 (1)原式提取公因式,再利用平方差公式分解即可;
(2)原式利用平方差公式及完全平方公式分解即可.

解答 解:(1)原式=a(a2-4b2)=a(a+2b)(a-2b);
(2)原式=(x2+2x+1)(x2-1)=(x+1)3(x-1).

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高(  )
A.8元或10元B.12元C.8元D.10元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.因式分解
(1)4x2-64                      
(2)x3y-2x2y2+xy3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算
(1)0+(-4$\frac{1}{4}$)-(+1$\frac{1}{8}$)-(-$\frac{17}{4}$)
(2)1÷(1$\frac{1}{6}$)×(-$\frac{6}{7}$)÷(-12
(3)$\sqrt{0.25}$-$\sqrt{\frac{1}{16}-\frac{1}{25}}$
(4)[5-2×($\root{3}{27}$-2)]-3×($\sqrt{4}$+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解下列方程组或计算  
(1)$\left\{\begin{array}{l}{3m-2n=5}\\{4m+2n=9}\end{array}\right.$              
(2)$\left\{\begin{array}{l}{4x+y=5}\\{3x-2y=1}\end{array}\right.$
(3)(-$\frac{3}{2}$ab-2a)(-$\frac{2}{3}$a2b2)      
(4)(a+b)2+a(a-2b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.
(1)请写出点A,C的坐标;
(2)请作出三角形ABC关于y轴对称的三角形A1B1C1
(3)求△ABC中AB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算
(1)(1-$\frac{1}{6}$+$\frac{3}{4}$)×(-48)
(2)(-1)10×2+(-2)3÷4
(3)-42-3×22×($\frac{1}{3}$-1)÷(-1$\frac{1}{3}$)
(4)-32-$\frac{1}{3}$×[(-5)2×(-$\frac{3}{5}$)-240÷(-4)×$\frac{1}{4}$].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在数学兴趣小组活动中,小明进行数学探究活动,将边长为$\sqrt{2}$的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)试猜想:DG与BE的关系DG=BE,DG⊥BE;
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长;
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.化简:
(1)(-1)2×3-(-2)3÷2          
(2)(-36)×($\frac{4}{9}$-$\frac{5}{6}$-$\frac{7}{12}$)
(3)$\frac{1}{2}$mn-2mn+3              
(4)(x-2y)-(y-3x)
(5)2 (2a-3b)+3 (2b-3a)   
(6)(x2-y2)-3 (2x2-3y2

查看答案和解析>>

同步练习册答案