【题目】如图,已知,
,连接
,过
点作
的垂线段
,使
,连接
.
(1)如图1,求点坐标;
(2)如图2,若点从
点出发沿
轴向左平移,连接
,作等腰直角
,连接
,当点
在线段
上,求证:
;
(3)在(2)的条件下若、
、
三点共线,求此时
的度数及
点坐标.
【答案】(1)点坐标为
;(2)证明见解析;(3)∠APB=135°,
点坐标为
.
【解析】
(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
(3)根据C、P,Q三点共线,得到∠BQC=135,根据全等三角形的性质得到∠BPA=∠BQC=135
,根据等腰三角形的性质求出OP,得到P点坐标.
(1)作轴于
,
则,
∵,
∴,
∴,
在和
中,
,
∴,
∴,
,
∴,
∴点坐标为
;
(2)∵,
∴,即
,
在和
中,
,
∴,
∴;
(3)∵是等腰直角三角形,∴
,
当、
、
三点共线时,
,
由(2)可知,,
∴,
∴,
∴,
∴点坐标为
.
故∠APB=135,
点坐标为
.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD是△ABC的角平分线.
(1)尺规作图:作BD的垂直平分线分别交AB,BC于点M,N;(保留作图痕迹,不写作法)
(2)连接MD,ND,判断四边形BMDN的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与
轴交于
、
两点,与
轴交于
点,且
.
(1)求抛物线的解析式及顶点的坐标;
(2)判断的形状,证明你的结论;
(3)点是抛物线对称轴上的一个动点,当
周长最小时,求点
的坐标及
的最小周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A、B的坐标分别为(10,0)、(0,4),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C以每秒1个单位匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P运动的时间为_____秒.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:
①=
; ②
=
; ③
=
; ④
=
.其中正确的个数有( )
A. 1个 B. C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的菱形按照一定规律组成的,请根据排列规律完成下列问题:
(1)填写下表:
图形序号 | 菱形个数 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根据表中规律猜想,图n中菱形的个数用含n的式子表示,不用说理
;
(3)是否存在一个图形恰好由91个菱形组成?若存在,求出图形的序号;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2)延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形 ABCD 内接于⊙ O ,AC 和 BD 相交于E , BC = CD = 4 , AE = 6 ,且 BE 和 DE 的长是正整数,求 BD 的 长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与坐标轴分别交于A,B,C,点D在x轴上,AC=CD,过点D作DE⊥x轴交抛物线于点E,点P,Q分别是线段CO,CD上的动点,且CP=QD.记△APC的面积为S1,△PCQ的面积为S2,△QED的面积为S3,
(1)若S1+S3=4S2 ,求Q点坐标;
(2)连结AQ,求AP+AQ的最小值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com