精英家教网 > 初中数学 > 题目详情

如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长y,yx之间的函数解析式,并写出定义域.
(3)△BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.

(1)证明:∵大⊙O与CD相切于点C,
∴∠DCO=90°.
∴∠BCD+∠OBC=90°,…
∵CB⊥AD,
∴∠ABO+∠OCB=90°,
∵OC=OB,
∴∠OBC=∠OCB,…
∴∠BCD=∠ABO.…
∵小⊙O与AB相切于点A,
∴∠BAO=90°.
∴∠CBD=∠BAO.…
∴△AOB∽△BDC.…

(2)解:过点O作OH⊥BC,垂足为H.
∵∠OAB=∠ABC=∠BHO=90°,
∴四边形OABH是矩形.…
∵BC是大⊙O的弦,
∴BC=2BH=2OA=2,…
在Rt△OAB中,AB==.…
∵△AOB∽△BDC,
,…

∴函数解析式为y=,…
定义域为:x>1.…

(3)解:当EB=EC时,∠ECB=∠EBC,而∠ECB=∠OBC,
∴EB≠EC.
当CE=CB时,OC=CE+OE=CB+OE=2+1=3.…
当BC=BE时,∠BEC=∠ECB=∠OBC,则△BCE∽△OCB.…

设OC=x,则CE=x-1,
解得:x=(负值舍去).
∴OC=.…
综上所述,△BCE能成为等腰三角形,这时大圆半径为3或
分析:(1)由大⊙O与CD相切于点C,根据切线的性质,可得∠DCO=90°,又由BC⊥AB,OB=OC,根据等边对等角与等角的余角相等,可得∠BCD=∠ABO,又由小⊙O与AB相切于点A,可得∠CBD=∠BAO=90°,由有两角对应相等的三角形相似,即可判定△AOB∽△BDC;
(2)首先过点O作OH⊥BC,垂足为H.易得四边形OABH是矩形,由勾股定理可得AB=,又由△AOB∽△BDC,根据相似三角形的对应边成比例,即可求得y与x之间的函数解析式;
(3)分别从EB=EC,CE=CB,BC=BE去分析求解,即可求得答案.
点评:此题考查了相似三角形的判定与性质,勾股定理,二次根式有意义的条件,切线的性质以及等腰三角形的性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•静安区二模)如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长y,yx之间的函数解析式,并写出定义域.
(3)△BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP=1,MA=AB=BC,则△MBQ的面积为
3
15
8
3
15
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为(  )

查看答案和解析>>

同步练习册答案