分析 (1)①根据x2-(k+1)x+$\frac{3k}{2}$-1=0的解是抛物线与x轴的交点横坐标,对△的值进行判断即可;
②根据直线y=kx+k2,与y轴交点坐标是(0,k2),判断出无论k取何实数值k2≥0,直线与y轴的负半轴没有交点.
(2)根据OD2=4AB2,得到k2=4k2-16k+20,求出k的值,再根据k2=$\frac{3k}{2}$-1+2,求出k的值.
解答 解:(1)①正确,
∵x2-(k+1)x+$\frac{3k}{2}$-1=0的解是抛物线与x轴的交点横坐标,
由判别式△=(k+1)2-4($\frac{3k}{2}$-1)=k2-4k+5=(k-2)2+1>0,
∴无论k取何实数值,抛物线总与x轴有两个不同的交点;
②正确.
∵直线y=kx+k2,与y轴交点坐标是(0,k2),而无论k取何实数值k2≥0,
∴直线与y轴的负半轴没有交点.
(2)∵|OD|=|-k|,|AB|=$\sqrt{{k}^{2}-4k+5}$
∴OD2=4AB2,
即k2=4k2-16k+20,
解得,k=2或k=$\frac{10}{3}$
又∵OC1=k2,OC=$\frac{3k}{2}$-1>0,
∴k2=$\frac{3k}{2}$-1+2,
解得k=2或k=-$\frac{1}{2}$,
综上得k=2,
∴抛物线解析式为y=x2-3x+2,最小值为-$\frac{1}{4}$.
点评 本题考查了二次函数综合题,涉及函数与方程的关系、一元二次方程的解与二次函数与x轴交点的关系等,(1)要根据根的判别式与抛物线与x轴交点的关系解答,(2)根据OC1=OC+2且OD2=4AB2,列方程解答,综合性较强.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 如果两个数的绝对值相等,那么这两个数相等 | |
B. | 两直线平行,内错角相等 | |
C. | 矩形的四个角都相等 | |
D. | 对顶角相等 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4cm和6cm | B. | 6cm和8cm | C. | 20cm和30cm | D. | 8cm和12cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
组别 | 观点 | 频数 |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | p |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com