分析 求出∠A=∠BCD,根据锐角三角函数的定义求出sin∠BCD即可.
解答 解:
∵CD⊥AB,
∴∠CDB=90°,
由勾股定理得:BC=5,
∵∠ACB=90°,
∴∠A+∠B=90°,∠BCD+∠B=90°,
∴∠A=∠BCD,
∴sinA=sin∠BCD=$\frac{BD}{BC}$=$\frac{3}{5}$,
故答案为:$\frac{3}{5}$.
点评 本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=$\frac{BC}{AB}$,cosA=$\frac{AC}{AB}$,tanA=$\frac{BC}{AC}$.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com