【题目】如图,有一个形如六边形的点阵,它的中心是一个点,算做第一层,第二层每边两个点,第三层每边三个点,以此类推.
(1)填写下表
层数 | 1 | 2 | 3 | 4 | 5 |
该层对应的点数 | 1 | 6 | 12 |
(2)写出第n层对应的点数(n≥2);
(3)如果某层一共有72个点,请你求出对应的层数.
【答案】(1)18,24;(2) 6(n-1)(n≥2);见解析.(3)13.
【解析】(1)观察图形中点的排列规律得到第一层对应的点数为1,第二层对应的点数为6×2-6=6,第三层对应的点数为6×3-6=12,则第四层对应的点数为6×4-6=18,第五层对应的点数为6×5-6=24;
(2)第n层对应的点数为6(n-1)(n≥2);
(3)利用(2)的结论得到6(n-1)=72,然后解方程即可.
(1)第一层对应的点数为1,第二层对应的点数为6×2-6=6,第三层对应的点数为6×3-6=12,
则第四层对应的点数为6×4-6=18,第五层对应的点数为6×5-6=24;
故答案为18,24;
(2)第n层对应的点数为6(n-1)(n≥2);
(3)设72个点所对应的层数为n,
根据(2)的结论得6(n-1)=72,解得n=13,
即第13层对应的点数为72.
科目:初中数学 来源: 题型:
【题目】如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.
(1)图中“象”的位置可表示为____________;
(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移 个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如下图所示已知图中从左到右前第一、第二、第三、第五小组的频率分别为0.04 , 0.12 ,0.4 ,O.28 ,根据已知条件解答下列问题:
(1)第四个小组的频率是多少? 你是怎样得到的?
(2)这五小组的频数各是多少?
(3)在这次跳绳中,跳绳次数的中位数落在第几小组内?
(4)将频数分布直方图补全,并分别写出各个小组的频数,并画出频数分布折线图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区调查社区居民双休日的学习状况,采取下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住层楼中随机选取200名居民;③选取社区内的200名在校学生.
(1)上述调查方式最合理的是 (填序号);
(2)将最合理的调查方式得到的数据制成扇形统计图(如图①)和频数分布直方图(如图②).
①请补全直方图(直接画在图②中);
②在这次调查中,200名居民中,在家学习的有 人;
(3)请估计该社区2000名居民中双休日学习时间不少于的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有三个点A,B,C,回答下列问题:
(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?
(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;
(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。
(1)若两人先合作2天,剩下的由徒弟单独做,结果超出老王预期的工期3天完成,求老王预期的工期天数;
(2)若师傅的工价每天300元,徒弟的工价每天220元,老王房子的泥水工价预算不超过3180元,问师傅至少要做几天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入表是某周的生产情况超产为正、减产为负:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 |
根据记录可知前三天共生产多少辆;
产量最多的一天比产量最少的一天多生产多少辆;
该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 013个“智慧数”是______.
【答案】2 687
【解析】解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4n(n≥2).因为2 013÷3=671,所以第2 013个“智慧数”是第671组中的第3个数,即为4×671+3=2 687.
点睛:找规律题需要记忆常见数列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.
【题型】填空题
【结束】
19
【题目】如图,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com