精英家教网 > 初中数学 > 题目详情
点D为等腰直角三角形ACB的直角边CB的延长线上一点,∠C=90°,连接AD,
(1)如图1,AE⊥AD于A,且AE=AD,连接BE.求证:BE⊥BC;
(2)如图2,AE⊥AB,DE⊥BC交AE于点E,连接EC,BE,求证:BE=
2
AD
精英家教网
分析:(1)作EF⊥CA的延长线于F,证出△AFE≌△ACD,得到EF=AC=BC,根据∠CAF=90°证出四边形CBEF为矩形,从而得出BE⊥BC.
(2)过A作AF⊥DE于F,得到△ACD∽△BAE,然后根据等腰三角形的性质解答即可.
解答:精英家教网证明:(1)过E作EF⊥CA的延长线于F,
可证△AFE≌△DCA,
∴EF=AC=BC,
∴四边形CBEF为平行四边形,
∴∠CBE=90°,
∴BE⊥BC;

(2)过A作AF⊥DE于F,
可证四边形ACDF为矩形,△AFE为等腰直角三角形,
则△ACD∽△BAE,
AE
CD
=
AB
AC
=
2

BE=
2
AD
点评:此题考查了等腰三角形的性质,作出辅助线,构造直角三角形,根据直角三角形的性质证明三角形全等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点O为等腰直角三角形ABC的重心,∠CAB=90°,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.
(1)当直线m与BC平行时(如图1),请你猜想线段BE、CF和AD三者之间的数量关系并证明;
(2)当直线m绕点O旋转到与BC不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF三者之间又有怎样的数量关系?请写出你的结论,不需证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

点D为等腰直角三角形ACB的直角边CB的延长线上一点,∠C=90°,连接AD,
(1)如图1,AE⊥AD于A,且AE=AD,连接BE.求证:BE⊥BC;
(2)如图2,AE⊥AB,DE⊥BC交AE于点E,连接EC,BE,求证:数学公式

查看答案和解析>>

科目:初中数学 来源:2011年湖北省武汉市江岸区中考数学模拟试卷(二)(解析版) 题型:解答题

点D为等腰直角三角形ACB的直角边CB的延长线上一点,∠C=90°,连接AD,
(1)如图1,AE⊥AD于A,且AE=AD,连接BE.求证:BE⊥BC;
(2)如图2,AE⊥AB,DE⊥BC交AE于点E,连接EC,BE,求证:

查看答案和解析>>

科目:初中数学 来源:2010年北京市石景山区中考数学一模试卷(解析版) 题型:解答题

(2010•石景山区一模)我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点O为等腰直角三角形ABC的重心,∠CAB=90°,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.
(1)当直线m与BC平行时(如图1),请你猜想线段BE、CF和AD三者之间的数量关系并证明;
(2)当直线m绕点O旋转到与BC不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF三者之间又有怎样的数量关系?请写出你的结论,不需证明.

查看答案和解析>>

同步练习册答案