分析 (1)根据矩形的性质和已知条件可证明△AEF≌△DCE,可证得AE=DC;
(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.
解答 (1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△AEF和△DCE中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠1=∠3}\\{EF=EC}\end{array}\right.$,
∴△AEF≌△DCE(AAS),
∴AE=DC;
(2)解:由(1)得AE=DC,
∴AE=DC=$\sqrt{2}$,
在矩形ABCD中,AB=CD=$\sqrt{2}$,
在Rt△ABE中,AB2+AE2=BE2,即($\sqrt{2}$)2+($\sqrt{2}$)2=BE2,
∴BE=2.
点评 本题主要考查矩形的性质和全等三角形的判定和性质,在(1)中证得三角形全等是解题的关键,在(2)中注意勾股定理的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com