精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,BD=20,AD>AB,设∠ABD=α,已知sinα是方程25x2-35x+12=0的一个实根,点E,F分别是BC,DC上的点,EC+CF=8,设BE=x,△AEF的面积等于y.
(1)求出y与x之间的函数关系式;
(2)当E,F两点在什么位置时,y有最小值并求出这个最小值.
(1)解方程可得sinα1=
3
5
或sinα2=
4
5

∵AD>AB,
∴sinα=
3
5
,舍去
取sinα=
4
5
,则有AD=16,AB=12
∵BE=x,
∴EC=16-x,FC=8-EC=x-8,DF=12-FC=20-x.
则△AEF的面积y=16×12-
1
2
×12x-
1
2
×16(20-x)-
1
2
(16-x)(x-8)
=
1
2
x2-10x+96(8<x<16).

(2)y=
1
2
x2-10x+96=
1
2
(x-10)2+46,
所以当x=10,即BE=10,CF=2时,y有最小值为46.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.
(1)求抛物线的对称轴、顶点坐标及解析式;
(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;
(3)若M点是⊙C的优弧
ABO
(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点坐标是(4,2),与y轴的交点是(0,-6)
(1)求抛物线的解析式;
(2)求出抛物线与x轴的交点坐标;
(3)在左边的坐标系中画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象如图所示,根据图中的数据,
(1)求二次函数的解析式;
(2)设此二次函数的顶点为P,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
3
8
x2-
3
4
x+3
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+mx+n经过点A(1,0),B(6,0).
(1)求抛物线的解析式;
(2)抛物线与y轴交于点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经销甲、乙两种商品,现有如下信息:
信息1:甲、乙两种商品的进货单价之和是5元.
信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.
信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.
请根据以上信息,解答下列问题:
(Ⅰ)甲、乙两种商品的进货单价各是多少元?
(Ⅱ)该商品平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售单价分别降0.1元,这两种商品每天可各多销售100件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=
3
,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案