精英家教网 > 初中数学 > 题目详情
如图:已知AB是⊙O的直径,P为AB的延长线上一点.且BP=AB,C、D是半圆AB的两个三等分点,连接PD.
 
(1)PD与⊙O有怎样的位置关系?并证明你的结论;
(2)连接PC,若AB=10cm,求由PC,弧CD、PD所围成的图形的面积(结果保留π).
(1)相切;(2)

试题分析:(1)连结OD、BD,由BP=AB ,OB=AB可证得BP=OB,再根据C、D是半圆AB的两个三等分点可得∠DOB=∠COD="60°" ,即可BD=OB=BP,从而证得结论;
(2)连接CO,由∠COD="60°" ,CO=OD可得CO=OD=CD,即可证得CD∥AB,根据平行线的性质及三角形的面积公式可得,从而可以求得结果.
(1)PD与⊙O相切,理由如下
连结OD、BD 
  
∵BP=AB ,OB=AB
∴BP=OB
∵C、D是半圆AB的两个三等分点
∴∠DOB=∠COD="60°"
∵OD=OB
∴BD=OB=BP
∴∠ODP=90°
∴PD与⊙O相切;
(2)连接CO

∵∠COD="60°" ,CO=OD
∴CO=OD=CD
∴∠DOB=∠CDO=60°
∴CD∥AB

.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.

(1)当OC=时(如图),求证:CD是⊙O的切线;
(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在轴上.

①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;
②能否在轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△中,的中点,⊙与AC,BC分别相切于点与点.与的一个交点为F,连结并延长交的延长线于点.若=,则__.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是(  )

A.外切     B.相交     C.内含      D.外离

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于(  )
A.80°B.50°C.40°D.20°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果两圆的半径分别为8和4,圆心距为10,那么这两圆的位置关系是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙的半径为5,为⊙的弦,于点.若,则的长为
A.4B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC的3个顶点都在⊙O上,直径,则的长度是  

查看答案和解析>>

同步练习册答案