精英家教网 > 初中数学 > 题目详情
3.计算:$\frac{x}{x-2}$-$\frac{x+2}{{x}^{2}-4}$.

分析 原式通分并利用同分母分式的减法法则计算即可得到结果.

解答 解:原式=$\frac{x(x+2)}{(x+2)(x-2)}$-$\frac{x+2}{(x+2)(x-2)}$=$\frac{(x+2)(x-1)}{(x+2)(x-2)}$=$\frac{x-1}{x-2}$.

点评 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.为了了解1000名初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,可得频率分布表:
(1)这个问题中,总体是1000名初三毕业班学生每分钟跳绳次数的全体;  样本容量a=100;
(2)第四小组的频数b=40,频率c=0.40;
(3)若次数在110次(含110次)以上为达标,试估计该校初三毕业生一分钟跳绳的达标率是多少?
组别分  组频数频率
189.5~99.540.04
299.5~109.530.03
3109.5~119.5450.45
4119.5~129.5bc
5129.5~139.560.06
6139.5~149.520.02
合     计a1.00

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形边长为(  )
A.2nB.2n-1C.($\sqrt{2}$)nD.($\sqrt{2}$)n-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:
(1)(x-2y)2+(x-y)(x-2y)-2(x-3y)(x-y),其中x=-4,y=2$\frac{1}{2}$.
(2)(a+b)(a-b)+(4ab2-8a2b2)÷4ab,其中a=2,b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点A(1,4),B(-4,a)在双曲线y=$\frac{k}{x}$图象上,直线AB分别交x轴,y轴于C、D,过点A作AE⊥x轴,垂足为E,过点B作BF⊥y轴,垂足为F,连接AF、BE交于点G.
(1)求k的值及直线AB的解析式;
(2)判断四边形ADFE的形状,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2$\sqrt{3}$),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,直线a∥b,△ABC为等腰直角三角形,∠BAC=90°,则∠1的度数是(  )
A.22.5°B.36°C.45°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:△ABC内接于⊙O,D是$\widehat{BC}$上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD-∠ABD=2∠BDN,AC=5$\sqrt{5}$,BN=3$\sqrt{5}$,tan∠ABC=$\frac{1}{2}$,求BF的长.

查看答案和解析>>

同步练习册答案