精英家教网 > 初中数学 > 题目详情
(2013•本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有(  )
分析:先由菱形的性质得出AD∥BC,由平行线的性质得到∠BAD+∠B=180°,又∠BAD=2∠B,求出∠B=60°,则∠D=∠B=60°,△ABC与△ACD是全等的等边三角形,再根据E,F分别为BC,CD的中点,即可求出与△ABE全等的三角形(△ABE除外)有△ACE,△ACF,△ADF.
解答:解:∵四边形ABCD是菱形,
∴AB=BC=CD=DA,∠D=∠B,AD∥BC,
∴∠BAD+∠B=180°,
∵∠BAD=2∠B,
∴∠B=60°,
∴∠D=∠B=60°,
∴△ABC与△ACD是全等的等边三角形.
∵E,F分别为BC,CD的中点,
∴BE=CE=CF=DF=
1
2
AB.
在△ABE与△ACE中,
AB=AC
∠B=∠ACB=60°
BE=CE

∴△ABE≌△ACE(SAS),
同理,△ACF≌△ADF≌△ABE,
∴图中与△ABE全等的三角形(△ABE除外)有3个.
故选C.
点评:本题考查了菱形的性质,全等三角形的判定,难度适中,根据菱形的性质求出∠D=∠B=60°是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪)如图放置的圆柱体的左视图为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪)如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=
k
x
(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm
(1)请判断DE与⊙O的位置关系,并说明理由;
(2)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

同步练习册答案