精英家教网 > 初中数学 > 题目详情
(2005•淮安)已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

【答案】分析:此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.
解答:答:第一种:连接CD、BE,得:CD=BE
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠CAB=∠EAD
∴∠CAD=∠EAB
∴△ABE≌△ADC
∴CD=BE

第二种:连接DB、CE得:DB∥CE
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE
∴∠ADB=∠ABD,
∴∠BDF=∠FBD
同理:∠FCE=∠FEC
∴∠FCE=∠DBF
∴DB∥CE

第三种:连接DB、AF,得AF⊥BD
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF
∴AF⊥BD(10分)

第四种:连接CE、AF,得AF⊥CE
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF,
∴∠CAF=∠EAF
∴AF⊥BD
点评:本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2005•淮安)已知抛物线y=ax2+bx+c过点A(0,2)、B(),且点B关于原点的对称点C也在该抛物线上.
(1)求a、b、c的值;
(2)①这条抛物线上纵坐标为的点共有______个;
②请写出:函数值y随着x的增大而增大的x的一个范围______.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省淮安市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•淮安)已知抛物线y=ax2+bx+c过点A(0,2)、B(),且点B关于原点的对称点C也在该抛物线上.
(1)求a、b、c的值;
(2)①这条抛物线上纵坐标为的点共有______个;
②请写出:函数值y随着x的增大而增大的x的一个范围______.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一元二次方程》(05)(解析版) 题型:解答题

(2005•淮安)已知:关于x的方程x2+4x+a=0有两个实数根x1、x2,且2x1-x2=7,求实数a的值.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省淮安市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•淮安)已知不等式:(1)1-x<0;(2)<1;(3)2x+3>1;(4)0.2x-3<-2.你喜欢其中哪两个不等式,请把它们选出来组成一个不等式组,求出它的解集,并在数轴上把解集表示出来.

查看答案和解析>>

同步练习册答案