精英家教网 > 初中数学 > 题目详情
14.若a>b,则下列不等式一定成立的是(  )
A.a-b<0B.$\frac{a}{3}$<$\frac{b}{3}$C.1-a<1-bD.-1+a<-1+b

分析 根据不等式的性质,分别对每一项进行分析即可得出答案.

解答 解:A、∵a>b,∴a-b>0,故本选项错误;
B、∵a>b,∴$\frac{a}{3}$>$\frac{b}{3}$,故本选项错误;
C、∵a>b,∴-a<-b,∴1-a<1-b,故本选项正确;
D、∵a>b,∴-1+a>-1+b,故本选项错误;
故选C.

点评 此题主要考查了不等式的性质,掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他骑公共自行车比自驾车平均每小时少行驶45千米,他从家出发到上班地点,骑公共自行车所用的时间是自驾车所用的时间的4倍.小张骑公共自行车平均每小时行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列结论正确的是(  )
A.方程x+y=5所有的解都是方程组$\left\{\begin{array}{l}{x+y=5}\\{3x+8y=1}\end{array}\right.$的解
B.方程x+y=5所有的解都不是方程组$\left\{\begin{array}{l}{x+y=5}\\{3x+8y=1}\end{array}\right.$的解
C.方程组$\left\{\begin{array}{l}{x+y=5}\\{3x+8y=1}\end{array}\right.$的解不是方程x+y=5的一个解
D.方程组$\left\{\begin{array}{l}{x+y=5}\\{3x+8y=1}\end{array}\right.$的解是方程x+y=5的一个解

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.x的$\frac{1}{3}$与2的差不小于5,用不等式表示为$\frac{1}{3}x-2≥5$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.

如图①,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=$\frac{1}{2}$∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=$\frac{1}{2}$•$\frac{360°}{3}$=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=$\frac{1}{2}$•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照上面的方法和过程可求得:S正四边形=4S△OAB=4r2tan45°;
(2)如图③,当n=5时,仿照上面的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=n•r2•tan$\frac{180°}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.学校计划从商店购买同一品牌的钢笔和文具盒,已知购买一个文具盒比购买一个钢笔多用20元,若用400元购买文具盒和用160元购买钢笔,则购买文具盒的个数是购买钢笔个数的一半.
(1)分别求出该品牌文具盒、钢笔的定价;
(2)经商谈,商店给予学校购买一个该品牌文具盒赠送一个该品牌钢笔的优惠,如果学校需要钢笔的个数是文具盒个数的2倍还多8个,且学校购买文具盒和钢笔的总费用不超过670元,那么该学校最多可购买多少个该品牌文具盒?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组 
(1)$\left\{\begin{array}{l}{0.5x+0.7y=35}\\{x+0.4y=40}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=\frac{13}{2}}\\{\frac{x}{3}-\frac{y}{4}=\frac{3}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.问题背景
已知在△ABC中,AB边上的动点D由A向B运动(与A、B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.
(1)初步尝试
如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.
小王同学发现可以由以下两种思路解决问题:
思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;
思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);
(2)类比探究
如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是$\sqrt{3}$:1,求$\frac{AC}{HF}$的值;
(3)延伸拓展
如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记$\frac{BC}{AB}$=m,且点D,E的运动速度相等,试用含m的代数式表示$\frac{AC}{HF}$(直接写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算正确的是(  )
A.$\sqrt{2}$•$\sqrt{\frac{1}{2}}$=1B.$\root{3}{4}$-$\root{3}{3}$=1C.$\sqrt{6}$÷$\sqrt{3}$=2D.$\sqrt{4}$=±2

查看答案和解析>>

同步练习册答案