【题目】如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2 , 点A,B的对应点分别为点D,E.
(1)直接写出点A,C,D的坐标;
(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;
(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.
【答案】
(1)
解:由题意得:
将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,
解得:m1=2,m2=0(舍),
∴A(2,1)、C(0,1)、D(﹣2,1);
(2)
解:如图1,
由(1)知:B(1,1﹣a),过点B作BM⊥y轴,
若四边形ABDE为矩形,则BC=CD,
∴BM2+CM2=BC2=CD2,
∴12+(﹣a)2=22,
∴a= ,
∵y1抛物线开口向下,
∴a=﹣ ,
∵y2由y1绕点C旋转180°得到,则顶点E(﹣1,1﹣ ),
∴设y2=a(x+1)2+1﹣ ,则a= ,
∴y2= x2+2 x+1;
(3)
解:如图2,
当0≤t≤1时,则DP=t,构建直角△BQD,
得BQ= ,DQ=3,则BD=2 ,
∴∠BDQ=30°,
∴PH= t,PG= t,
∴S= (PE+PF)×DP= t2,
如图2,当1<t≤2时,EG=E′G= (t﹣1),E′F=2(t﹣1),
S不重合= (t﹣1)2,
S=S1+S2﹣S不重合= + (t﹣1)﹣ (t﹣1)2,
=﹣
综上所述:S= t2(0≤t≤1)或S=﹣ (1<t≤2).
【解析】本题考查了二次函数的性质,旋转的性质和矩形对角线的性质,以及三角函数及特殊角的应用,综合性较强;善于从已知中挖掘隐藏条件是本题的关键:如此题可以计算矩形的边长及对角线与边的夹角,得出30°,以此为突破口,将需要的边长用t表示,得出函数关系式;另外本题还运用了分类讨论的思想,这在二次函数中运用较多,应熟练掌握.(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG , 作辅助线构建直角三角形,求出PG和PH,利用面积公式计算;②当1<t≤2时,S=S直角三角形+S矩形﹣S不重合 , 这里不重合的图形就是△GE′F,利用30°角和60°角的直角三角形的性质进行计算得出结论.
【考点精析】通过灵活运用二次函数的性质和矩形的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.
(1)用尺规作图作出镜面BC经镜面EF反射后的反射光线CD;
(2)试判断AB与CD的位置关系;
(3)你是如何思考的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣ (x﹣ )2+4上,能使△ABP为等腰三角形的点P的个数有( )
A.3个
B.4个
C.5个
D.6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于_________________.
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①_________________________________________________________.
方法②_________________________________________________________.
(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式间的等量关系吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个自行车队进行训练,训练时所有队员都以相同的速度前进,突然,1号队员以每小时比其他队员快10千米的速度独自行进,行进了10千米后掉转车头,速度不变往回骑,直到与其他的队员会合.从1号队员离队开始到与其他队员重新会合,经过了15分钟.
(1)其他队员的行进速度是多少?
(2)1号队员从离队开始到与队员重新会合这个过程中,经过多长时间与其他队员相距1千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM,CE⊥CD.
(1)若∠O=50°,求∠BCD的度数;
(2)求证:CE平分∠OCA;
(3)当∠O为多少度时,CA分∠OCD成1:2两部分,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com