【题目】如图,已知是⊙的直径,,和是圆的两条切线,,为切点,过圆上一点作⊙的切线,分别交,于点,,连接,.若,则等于( )
A. 0.5 B. 1
C. D.
【答案】C
【解析】
连接OM、OC,根据圆周角定理可得∠AOC=2∠ABC=60°,由切线长定理可得MA=MC且∠MAO=∠MCO=90°,利用HL证明Rt△AOM≌Rt△COM,即可得∠AOM=∠COM=∠AOC=30°,在Rt△AOM中求得AM的长即可.
连接OM,OC,
∵∠ABC=30°,
∴∠AOC=2∠ABC=60°,
∵MA,MC分别为⊙O的切线,
∴MA=MC,且∠MAO=∠MCO=90°,
在Rt△AOM和Rt△COM中,
MA=MC,OM=OM,
∴Rt△AOM≌Rt△COM(HL),
∴∠AOM=∠COM=∠AOC=30°,
在Rt△AOM中,OA=AB=1,∠AOM=30°,
∴tan30°=,即 ,
解得:AM=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,是的中点,是线段延长线上一点,过点作,与线段的延长线交于点,连结、.
求证:;
若,试判断四边形是什么样的四边形,并证明你的结论;
若为的中点,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′.
(1)在图2中,除△ADC与△C′BA′全等外,请写出其他2组全等三角形;① ;② ;
(2)请选择(1)中的一组全等三角形加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).
(1)求抛物线及直线AC的解析式;
(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com