精英家教网 > 初中数学 > 题目详情
如图,AC与BD相交于点E,AD∥BC.若AE:EC=1:2,则S△AED:S△CEB为(  )
分析:由AD∥BC可证明△ADE∽CBE,再由相似三角形的性质就可以得出结论
解答:解:∵AD∥BC.
∴△ADE∽CBE,
∴S△AED:S△CEB=AE2:EC2
∵AE:EC=1:2,
∴S△AED:S△CEB=1:4,
故选D.
点评:本题考查了相似三角形的判定及相似三角形的面积之比等于相似比的平方运用.解答本题求出两三角形相似是关健.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,AC与BD相交于点P,若△ABC≌△DCB,则△ABP≌△DCP,理由是:
∵△ABC≌△DCB
∴AB=CD(全等三角形对应边相等)
∠A=
∠D

在△ABP和△DCP中
∠A=∠D
∠APB=
∠DPC
(对顶角相等)
AB=CD
∴△ABP≌△DCP  ( AAS )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,AC与BD相交于点O,已知OA=OC,OB=OD,则△AOB≌△COD的理由是
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于O,∠1=∠4,∠2=∠3,△ABC的周长为25cm,△AOD的周长为17cm,则AB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于点O,AD=BC,∠D=∠C,试说明BD与AC相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC与BD相交于点O,有以下四个条件:
①OD=OC;②∠C=∠D;③AD=BC;④∠DAO=∠CBO.
从这四个条件中任选两个,能使△DAO≌△CBO的选法种数共有(  )

查看答案和解析>>

同步练习册答案