精英家教网 > 初中数学 > 题目详情
3.如图,在?ABCD中,点E是BC的中点,连接并延长DE交AB的延长线于点F.
(1)求证:△CDE≌△BFE;
(2)若CD=3cm,请求出AF的长度.

分析 (1)根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等;
(2)根据全等三角形对应边相等可得CD=BF,从而得解.

解答 (1)证明:∵E是BC的中点,
∴CE=BE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠DCB=∠FBE,
在△CDE和△BFE中,$\left\{\begin{array}{l}{∠DCB=∠FBE}&{\;}\\{CE=BE}&{\;}\\{∠CED=∠BEF}&{\;}\end{array}\right.$,
∴△CDE≌△BFE(ASA);

(2)解:由(1)得△CDE≌△BFE,
∴CD=BF=3cm,
∴AB=3cm,
∴AF=AB+BF=6cm.

点评 本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.(1)解不等式:3-x≥2(x+3),并在每一解题步骤后面备注所依据的基本性质和运算法则(只填序号),备选的基本性质或运算法则如下:
①移项法则(不等式的基本性质1);     ②不等式的基本性质2;
③不等式的基本性质3;       ④去括号法则;     ⑤合并同类项法则.
(2)解不等式组$\left\{\begin{array}{l}{2x≤x+1①}\\{\frac{1+2x}{3}>x-1②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠3=∠4,求证:∠5=∠6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某市在一次市政施工中,有两段长度相等的人行道铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:
(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;
(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完成,所铺设的人行道共是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在一个不透明的袋子中装有若干个除颜色形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是$\frac{1}{5}$,那么袋子中共有15个球.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>$\frac{2}{x}$的解集为-1<x<0或x>2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,一束平行光线中插入一张对边平行的纸板,若光线与纸板左上方所成的∠=65°25′,那么光线与纸板右下方所成的∠2的度数是65°25′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=$\frac{m}{x}$(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n)
(1)求反比例函数与一次函数的解析式;
(2)连接OA、OB,求△AOB的面积;
(3)直接写出当y1<y2时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.一辆汽车从A地驶往B地,前$\frac{1}{3}$路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了11h.请你根据以上信息,就该汽车行驶的“路程”或“时间”提出一个用二元一次方程组解决的问题,并写出解答过程.

查看答案和解析>>

同步练习册答案