精英家教网 > 初中数学 > 题目详情
14.使得式子$\frac{\sqrt{x-1}}{x-2}$有意义的字母x的取值范围是x≥1且x≠2.

分析 二次根式的被开方数x-1≥0,且分式的分母x-2≠0,由此求得x的取值范围.

解答 解:依题意得:x-1≥0,且x-2≠0,
解得x≥1且x≠2.
故答案是:x≥1且x≠2.

点评 本题考查了二次根式的意义和性质.概念:式子$\sqrt{a}$(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.不等式5x-1>2x+5的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在一个不透明的袋子装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再先从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下面表格:
事件A必然事件随机事件
m的值42或3
(2)当(1)中的m=2时,请直接写出事件A发生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,BD是⊙O的切线,AE是⊙O的直径,AD是一条非直径的弦,过点B作BC⊥AB,BC与AD的延长线相交于点C,
(1)若BE=$\frac{1}{2}$AE,求∠EAD的度数;
(2)求证:AC•AD=AB•AE;
(3)在(1)条件下,当BC=2时,求四边形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,边长为4的大正方形ABCD内有一个边长为1的小正方形CEFG,动点P以每秒1cm的速度从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B停止(不含点A和点B).设△ABP的面积为S,点P的运动时间为t.
(1)小颖通过认真的观察分析,得出了一个正确的结论:当点P在线段DE上运动时,存在着“同底等高”的现象,因此当点P在线段DE上运动时△ABP的面积S始终不发生变化.
问:在点P的运动过程中,还存在类似的现象吗?若存在,请说出P的位置;若不存在,请说明理由.
(2)在点P的运动过程中△ABP的面积S是否存在最大值?若存在,请求出最大面积;若不存在,请说明理由.
(3)请写出S与t之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD是平行四边形.
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:
①作∠BAD的平分线,交CD于E,交BC的延长线于F;②连接BE;
(2)在(1)作出图形中,若∠F=45°,AB=8,DE=5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{{x}^{2}-6x+9}{{x}^{2}-9}$÷$\frac{x-3}{2}$,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.半径为1的两圆放置位置如图所示,一圆的直径恰好是另一圆的切线,圆心均为切点,则阴影部分的面积为$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知抛物线y=ax2-2x+c经过△ABC的三个顶点,其中点A(0,1),点B(9,10),AC∥x轴.
(1)求这条抛物线的解析式;
(2)求tan∠ABC的值;
(3)若点D为抛物线的顶点,点E是直线AC上一点,当△CDE与△ABC相似时,求点E的坐标.

查看答案和解析>>

同步练习册答案