精英家教网 > 初中数学 > 题目详情
如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD 的面积之比等于     
1:3
∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放
∴∠D=30°,∠A=45°,AB∥CD
∴∠A=∠OCD,∠D=∠OBA
∴△AOB∽△COD
设BC=a
∴CD=a
∴S△AOB:S△COD=1:3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动。

(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;
(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由。
(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠C=90°,有三个正方形CDEF、DGHK、GRPQ,它们分别是△ACB、△EDB和△HGB的内接正方形,EF=10cm,HK=7cm,则第三个正方形的边长PQ的长为(     ).

A. 4cm           B. 5cm        C. 4.5 cm         D. 4.9 cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图(1)中的梯形符合_______条件时,可以经过旋转和翻折形成图案(2).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2

(1)将△ABC向左平移4个单位,得到△A1B1C1
(2)以图中的O为位似中心,将△ABC作位似变换且放大到原来的两倍,得到△A2B2C2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,E,F分别是CD,BC上的点,若∠AEF=90°,则一定有                          
A.△ADE∽△AEFB.△ADE∽△ECFC.△ECF∽△AEF D.△AEF∽△ABF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).

(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点BC两点的对应点分别为B′C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′       ),C′        );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(               ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=900,点P在BC边上,当
∠APD=900时,易证,从而得到,解答下列问题.
(1)模型探究1:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时, 结论仍成立吗? 试说明理由;
(2)拓展应用:如图3,M为AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=,AF=3,求FG的长.

查看答案和解析>>

同步练习册答案