【题目】如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.
(1)证明:△ABC是直角三角形;
(2)求△AEB的面积.
【答案】(1)证明见解析;(2)S△ABE=.
【解析】
(1)根据勾股定理的逆定理即可判定△ABC是直角三角形;
(2)由翻折不变性可知:EC=DE,AC=AD=8cm,∠ADE=∠C=∠BDE=90°,设EC=DE=x,在Rt△BDE中,根据勾股定理列出方程,求出的值,根据三角形的面积公式进行求解即可.
解:(1)∵AC2+BC2=82+152=289,AB2=289,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(2)由翻折不变性可知:EC=DE,AC=AD=8cm,∠ADE=∠C=∠BDE=90°,
设EC=DE=x,在Rt△BDE中,∵DE2+BD2=BE2,
∴x2+92=(15-x)2,解得x=.
∴DE=
∴S△ABE=×AB×DE=×17=.
科目:初中数学 来源: 题型:
【题目】如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'
(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.
(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.
(3)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1, ∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4 的角平分线交于点D5,则∠BD5C的度数是( )
A. 56°;B. 60°;C. 68°;D. 94°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线CD与直线AB相交于C,根据下列语句画图,并填空.
(1)过点P作PQ∥CD,交AB于点Q(尺规作图);
(2)过点P作PR⊥CD,垂足为R.
(3)在(1)(2)的条件下,若∠ACD=65°,则∠PQB=____度,∠RPQ=____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影.已知桌面的直径为1.2 m,桌面距离地面1 m.若灯泡距离地面3 m,则地面上阴影部分的面积为 ( )
A. 0.36πm2 B. 0.81πm2 C. 2πm2 D. 3.24πm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:
①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;
③△DCE为直角三角形时,BD为8; ④0<CE≤6.4.
其中正确的结论是____________.(把你认为正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王泓同学顺便给出一组的值,老师自己说答案,当王泓说完:“”后,李老师不假思索,立刻就说出答案:“3”。同学们觉得不可思议,李老师用坚定的口吻说:“这个答案准确无误。”聪明的同学们,你能说出其中的道理吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:
①从1月到4月,手机销售总额连续下降
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降
③音乐手机4月份的销售额比3月份有所下降
④今年1-4月中,音乐手机销售额最低的是3月
其中正确的结论是________(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蓄电池的电压为定植,使用此电源时,电流I(A)和电阻R()成反比例函数关系,且当I=4A,R=5.
(1)蓄电池的电压是多少?请你写出这一函数的表达式.
(2)当电流喂A时,电阻是多少?
(3)当电阻是10.时,电流是多少?
(4)如果以此蓄电池为电源的用电器限制电流不超过10A,那么用电器的可变电阻应该控制在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com