·ÖÎö £¨1£©Çó³öA¡¢BµãµÄºá×ø±ê£¬¸ù¾ÝS¡÷OAB=S¡÷AOC-S¡÷BOC¼ÆËã¼´¿É£®
£¨2£©ÀûÓ÷½³Ì×éÒÔ¼°¸ùÓëϵÊýµÄ¹Øϵ£¬Çó³öAB£¬¸ù¾ÝAB=$\frac{5}{2}$$\sqrt{2}$£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨3£©Ê×ÏÈÖ¤Ã÷PM=PF£®ÍƳöPM+PN=PF+PN¡ÝNF=2ÍƳöµ±µãPÔÚNFÉÏʱµÈºÅ³ÉÁ¢£¬´ËʱNFµÄ·½³ÌΪy=-x+2$\sqrt{2}$£¬ÓÉ£¨1£©ÖªP£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©£¬Óɴ˼´¿É½â¾öÎÊÌ⣮
½â´ð ½â´ð£º½â£º£¨1£©µ±k=-1ʱ£¬l1£ºy=-x+2$\sqrt{2}$£¬
ÁªÁ¢µÃ£¬$\left\{\begin{array}{l}{y=-x+2\sqrt{2}}\\{y=\frac{1}{x}}\end{array}\right.$£¬»¯¼òµÃx2-2$\sqrt{2}$x+1=0£¬
½âµÃ£ºx1=$\sqrt{2}$-1£¬x2=$\sqrt{2}$+1£¬
ÉèÖ±Ïßl1ÓëyÖá½»ÓÚµãC£¬ÔòC£¨0£¬2$\sqrt{2}$£©£®
S¡÷OAB=S¡÷AOC-S¡÷BOC=$\frac{1}{2}$•2$\sqrt{2}$•£¨x2-x1£©=2$\sqrt{2}$£»
£¨2£©¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y-\sqrt{2}=k£¨x-\sqrt{2}£©}\\{y=\frac{1}{x}}\end{array}\right.$ ÕûÀíµÃ£ºkx2+$\sqrt{2}$£¨1-k£©x-1=0£¨k£¼0£©£¬
¡ß¡÷=[$\sqrt{2}$£¨1-k£©]2-4¡Ák¡Á£¨-1£©=2£¨1+k2£©£¾0£¬
¡àx1¡¢x2 ÊÇ·½³ÌµÄÁ½¸ù£¬
¡à$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{\sqrt{2}£¨k-1£©}{k}}\\{{x}_{1}•{x}_{2}=-\frac{1}{k}}\end{array}\right.$ ¢Ù£¬
¡àAB=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}£©^{2}}$£¬
=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}[1+£¨\frac{1}{{x}_{1}{x}_{2}}£©^{2}]}$£¬
=$\sqrt{[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}][1+£¨\frac{1}{{x}_{1}{x}_{2}}£©^{2}]}$£¬
½«¢Ù´úÈëµÃ£¬AB=$\sqrt{\frac{2£¨{k}^{2}+1£©^{2}}{{k}^{2}}}$=$\frac{\sqrt{2}£¨{k}^{2}+1£©}{-k}$£¨k£¼0£©£¬
¡à$\frac{\sqrt{2}£¨{k}^{2}+1£©}{-k}$=$\frac{5\sqrt{2}}{2}$£¬
ÕûÀíµÃ£º2k2+5k+2=0£¬
½âµÃ£ºk=-2£¬»ò k=-$\frac{1}{2}$£»
£¨3£©¡ßy-$\sqrt{2}$=k£¨x-$\sqrt{2}$£©£¨k£¼0£©¹ý¶¨µãF£¬
¡àx=$\sqrt{2}$£¬y=$\sqrt{2}$£¬
¡àF£¨$\sqrt{2}$£¬$\sqrt{2}$£©£¬
ÉèP£¨x£¬$\frac{1}{x}$£©£¬ÔòM£¨-$\frac{1}{x}$+$\sqrt{2}$£¬$\frac{1}{x}$£©£¬
ÔòPM=x+$\frac{1}{x}$-$\sqrt{2}$=$\sqrt{£¨x+\frac{1}{x}-\sqrt{2}£©^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}£¨x+\frac{1}{x}£©+4}$£¬
¡ßPF=$\sqrt{£¨x-\sqrt{2}£©^{2}+£¨\frac{1}{x}-\sqrt{2}£©^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}£¨x+\frac{1}{x}£©+4}$£¬
¡àPM=PF£®
¡àPM+PN=PF+PN¡ÝNF=2£¬
µ±µãPÔÚNFÉÏʱµÈºÅ³ÉÁ¢£¬´ËʱNFµÄ·½³ÌΪy=-x+2$\sqrt{2}$£¬
ÓÉ£¨1£©ÖªP£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©£¬
¡àµ±P£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©Ê±£¬PM+PN×îС£¬´ËʱËıßÐÎQMPNÊÇÖܳ¤×îСµÄƽÐÐËıßÐΣ¬
¡àQ£¨-$\sqrt{2}$£¬2 $\sqrt{2}$£©£®
µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢Á½µã¼ä¾àÀ빫ʽ¡¢Æ½ÐÐËıßÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓ÷½³Ì×éÇóÁ½¸öº¯ÊýµÄ½»µã×ø±ê¡¢Ñ§»áÀûÓòÎÊý£¬¹¹½¨·½³Ì½â¾öÎÊÌ⣬ѧ»áÀûÓÃÁ½µãÖ®¼äÏ߶Î×î¶Ì½â¾ö×î¶ÌÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 9800ÃûѧÉúÊÇ×ÜÌå | |
B£® | ÿ¸öѧÉúÊǸöÌå | |
C£® | 100ÃûѧÉúÊÇËù³éÈ¡µÄÒ»¸öÑù±¾ | |
D£® | 100ÃûѧÉúµÄÊÓÁ¦Çé¿öÊÇËù³éÈ¡µÄÒ»¸öÑù±¾ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ͼÐÎÃû³Æ | »ù±¾Í¼ÐεĸöÊý | ÁâÐεĸöÊý |
ͼ¢Ù | 1 | 1 |
ͼ¢Ú | 2 | 3 |
ͼ¢Û | 3 | 7 |
ͼ¢Ü | 4 | 11 |
¡ | ¡ | ¡ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com