4£®ÒÑ֪˫ÇúÏßy=$\frac{1}{x}$£¨x£¾0£©£¬Ö±Ïßl1£ºy-$\sqrt{2}$=k£¨x-$\sqrt{2}$£©£¨k£¼0£©¹ý¶¨µãFÇÒÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬Ö±Ïßl2£ºy=-x+$\sqrt{2}$£®
£¨1£©Èôk=-1£¬Çó¡÷OABµÄÃæ»ýS£»
£¨2£©ÈôAB=$\frac{5}{2}$$\sqrt{2}$£¬ÇókµÄÖµ£»
£¨3£©ÉèN£¨0£¬2$\sqrt{2}$£©£¬PÔÚË«ÇúÏßÉÏ£¬MÔÚÖ±Ïßl2ÉÏÇÒPM¡ÎxÖᣬÎÊÔÚµÚ¶þÏóÏÞÄÚÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹µÃËıßÐÎQMPNÊÇÖܳ¤×îСµÄƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öQµãµÄ×ø±ê£®

·ÖÎö £¨1£©Çó³öA¡¢BµãµÄºá×ø±ê£¬¸ù¾ÝS¡÷OAB=S¡÷AOC-S¡÷BOC¼ÆËã¼´¿É£®
£¨2£©ÀûÓ÷½³Ì×éÒÔ¼°¸ùÓëϵÊýµÄ¹Øϵ£¬Çó³öAB£¬¸ù¾ÝAB=$\frac{5}{2}$$\sqrt{2}$£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨3£©Ê×ÏÈÖ¤Ã÷PM=PF£®ÍƳöPM+PN=PF+PN¡ÝNF=2ÍƳöµ±µãPÔÚNFÉÏʱµÈºÅ³ÉÁ¢£¬´ËʱNFµÄ·½³ÌΪy=-x+2$\sqrt{2}$£¬ÓÉ£¨1£©ÖªP£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©£¬Óɴ˼´¿É½â¾öÎÊÌ⣮

½â´ð ½â´ð£º½â£º£¨1£©µ±k=-1ʱ£¬l1£ºy=-x+2$\sqrt{2}$£¬
ÁªÁ¢µÃ£¬$\left\{\begin{array}{l}{y=-x+2\sqrt{2}}\\{y=\frac{1}{x}}\end{array}\right.$£¬»¯¼òµÃx2-2$\sqrt{2}$x+1=0£¬
½âµÃ£ºx1=$\sqrt{2}$-1£¬x2=$\sqrt{2}$+1£¬
ÉèÖ±Ïßl1ÓëyÖá½»ÓÚµãC£¬ÔòC£¨0£¬2$\sqrt{2}$£©£®
S¡÷OAB=S¡÷AOC-S¡÷BOC=$\frac{1}{2}$•2$\sqrt{2}$•£¨x2-x1£©=2$\sqrt{2}$£»

£¨2£©¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y-\sqrt{2}=k£¨x-\sqrt{2}£©}\\{y=\frac{1}{x}}\end{array}\right.$ ÕûÀíµÃ£ºkx2+$\sqrt{2}$£¨1-k£©x-1=0£¨k£¼0£©£¬
¡ß¡÷=[$\sqrt{2}$£¨1-k£©]2-4¡Ák¡Á£¨-1£©=2£¨1+k2£©£¾0£¬
¡àx1¡¢x2 ÊÇ·½³ÌµÄÁ½¸ù£¬
¡à$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{\sqrt{2}£¨k-1£©}{k}}\\{{x}_{1}•{x}_{2}=-\frac{1}{k}}\end{array}\right.$ ¢Ù£¬
¡àAB=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}£©^{2}}$£¬
=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}[1+£¨\frac{1}{{x}_{1}{x}_{2}}£©^{2}]}$£¬
=$\sqrt{[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}][1+£¨\frac{1}{{x}_{1}{x}_{2}}£©^{2}]}$£¬
½«¢Ù´úÈëµÃ£¬AB=$\sqrt{\frac{2£¨{k}^{2}+1£©^{2}}{{k}^{2}}}$=$\frac{\sqrt{2}£¨{k}^{2}+1£©}{-k}$£¨k£¼0£©£¬
¡à$\frac{\sqrt{2}£¨{k}^{2}+1£©}{-k}$=$\frac{5\sqrt{2}}{2}$£¬
ÕûÀíµÃ£º2k2+5k+2=0£¬
½âµÃ£ºk=-2£¬»ò k=-$\frac{1}{2}$£»

£¨3£©¡ßy-$\sqrt{2}$=k£¨x-$\sqrt{2}$£©£¨k£¼0£©¹ý¶¨µãF£¬
¡àx=$\sqrt{2}$£¬y=$\sqrt{2}$£¬
¡àF£¨$\sqrt{2}$£¬$\sqrt{2}$£©£¬
ÉèP£¨x£¬$\frac{1}{x}$£©£¬ÔòM£¨-$\frac{1}{x}$+$\sqrt{2}$£¬$\frac{1}{x}$£©£¬
ÔòPM=x+$\frac{1}{x}$-$\sqrt{2}$=$\sqrt{£¨x+\frac{1}{x}-\sqrt{2}£©^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}£¨x+\frac{1}{x}£©+4}$£¬
¡ßPF=$\sqrt{£¨x-\sqrt{2}£©^{2}+£¨\frac{1}{x}-\sqrt{2}£©^{2}}$=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2\sqrt{2}£¨x+\frac{1}{x}£©+4}$£¬
¡àPM=PF£®
¡àPM+PN=PF+PN¡ÝNF=2£¬
µ±µãPÔÚNFÉÏʱµÈºÅ³ÉÁ¢£¬´ËʱNFµÄ·½³ÌΪy=-x+2$\sqrt{2}$£¬
ÓÉ£¨1£©ÖªP£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©£¬
¡àµ±P£¨$\sqrt{2}$-1£¬$\sqrt{2}$+1£©Ê±£¬PM+PN×îС£¬´ËʱËıßÐÎQMPNÊÇÖܳ¤×îСµÄƽÐÐËıßÐΣ¬
¡àQ£¨-$\sqrt{2}$£¬2 $\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢Á½µã¼ä¾àÀ빫ʽ¡¢Æ½ÐÐËıßÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓ÷½³Ì×éÇóÁ½¸öº¯ÊýµÄ½»µã×ø±ê¡¢Ñ§»áÀûÓòÎÊý£¬¹¹½¨·½³Ì½â¾öÎÊÌ⣬ѧ»áÀûÓÃÁ½µãÖ®¼äÏ߶Î×î¶Ì½â¾ö×î¶ÌÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÎªÁ˽âijÏØ°ËÄ꼶9800ÃûѧÉúµÄÊÓÁ¦Çé¿ö£¬´ÓÖгé²éÁË100ÃûѧÉúµÄÊÓÁ¦Çé¿ö£¬¶ÔÓÚÕâ¸öÎÊÌ⣬ÏÂÃæ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®9800ÃûѧÉúÊÇ×ÜÌå
B£®Ã¿¸öѧÉúÊǸöÌå
C£®100ÃûѧÉúÊÇËù³éÈ¡µÄÒ»¸öÑù±¾
D£®100ÃûѧÉúµÄÊÓÁ¦Çé¿öÊÇËù³éÈ¡µÄÒ»¸öÑù±¾

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬CÊÇ°ëÔ²OÉϵÄÒ»µã£¬ACƽ·Ö¡ÏDAB£¬AD¡ÍCD£¬´¹×ãΪD£¬AD½»¡ÑOÓÚµãE£¬Á¬½ÓCE£®
£¨1£©ÅжÏCDÓë¡ÑOµÄλÖùØϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©ÈôEÊÇ$\widehat{AC}$µÄÖе㣬¡ÑOµÄ°ë¾¶Îª2£¬ÇóͼÖÐÒõÓ°²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ¢Ù£¬°Ñ¡Ï¦Á=60¡ãµÄÒ»¸öµ¥¶ÀµÄÁâÐγÆ×÷Ò»¸ö»ù±¾Í¼ÐΣ¬½«´Ë»ù±¾Í¼Ðβ»¶ÏµÄ¸´ÖƲ¢Æ½ÒÆ£¬Ê¹µÃÏÂÒ»¸öÁâÐεÄÒ»¸ö¶¥µãÓëÇ°Ò»¸öÁâÐεÄÖÐÐÄÖغϣ¬ÕâÑùµÃµ½Í¼¢Ú£¬Í¼¢Û£¬¡­
£¨1£©¹Û²ìͼÐβ¢Íê³É±í¸ñ£º
ͼÐÎÃû³Æ»ù±¾Í¼ÐεĸöÊýÁâÐεĸöÊý
ͼ¢Ù11
ͼ¢Ú23
ͼ¢Û37
ͼ¢Ü411
¡­¡­¡­
²ÂÏ룺ÔÚͼnÖУ¬ÁâÐεĸöÊýΪ4n-5[Óú¬ÓÐn£¨n¡Ý3£©µÄ´úÊýʽ±íʾ]£»
£¨2£©Èçͼ£¬½«Í¼n·ÅÔÚÖ±½Ç×ø±êϵÖУ¬ÉèÆäÖеÚÒ»¸ö»ù±¾Í¼ÐεÄÖÐÐÄO1µÄ×ø±êΪ£¨x1£¬1£©£¬Ôòx1=$\sqrt{3}$£»µÚ2017¸ö»ù±¾Í¼ÐεÄÖÐÐÄO2017µÄ×ø±êΪ£¨2017$\sqrt{3}$£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{5£¾3£¨x-4£©+2£¨1£©}\\{2x-3¡Ý1£¨2£©}\end{array}\right.$£®Çë½áºÏÌâÒâÌî¿Õ£¬Íê³É±¾ÌâµÄ½â·¨£®

£¨1£©½â²»µÈʽ£¨1£©£¬µÃx£¼5£»
£¨2£©½â²»µÈʽ£¨2£©£¬µÃx¡Ý2£»
£¨3£©°Ñ²»µÈʽ £¨1£©ºÍ £¨2£©µÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®
£¨4£©Ô­²»µÈʽµÄ½â¼¯Îª2¡Üx£¼5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖªA £¨-4£¬2£©£¬B £¨-2£¬6£©£¬C £¨0£¬4£©ÊÇÖ±½Ç×ø±êϵƽÃæÉÏÈýµã£®
£¨1£©°Ñ¡÷ABCÏòÓÒƽÒÆ4¸öµ¥Î»ÔÙÏòÏÂƽÒÆ1¸öµ¥Î»£¬µÃµ½¡÷A1B1C1£¬»­³öƽÒƺóµÄͼÐΣ»
£¨2£©Èô¡÷ABCÄÚ²¿ÓÐÒ»µãP £¨a£¬b£©£¬ÔòƽÒƺóËüµÄ¶ÔÓ¦µãPlµÄ×ø±êΪ£¨a+4£¬b-1£©£»
£¨3£©ÒÔÔ­µãOΪλËÆÖÐÐÄ£¬½«¡÷ABCËõСΪԭÀ´µÄÒ»°ë£¬µÃµ½¡÷A2B2C2£¬ÇëÔÚËù¸øµÄ×ø±êϵÖÐ×÷³öËùÓÐÂú×ãÌõ¼þµÄͼÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¡°µÍ̼»·±££¬ÄãÎÒͬÐС±£®ÒÇÕ÷ÊÐÇøµÄ¹«¹²×ÔÐгµ¸øÊÐÃñ³öÐдøÀ´²»ÉÙ·½±ã£®ÎÒУÊýѧÉçÍÅСѧԱ×ß½øСÇøËæ»úÑ¡È¡ÁËÊÐÃñ½øÐе÷²é£¬µ÷²éµÄÎÊÌâÊÇ¡°Äú´ó¸Å¶à¾ÃʹÓÃÒ»´Î¹«¹²×ÔÐгµ£¿¡±£¬½«±¾´Îµ÷²é½á¹û¹éΪËÄÖÖÇé¿ö£º
A£®Ã¿Ì춼Óã»B£®¾­³£Ê¹Óã»C£®Å¼¶ûʹÓã»D£®´ÓδʹÓã®
½«Õâ´Îµ÷²éÇé¿öÕûÀí²¢»æÖÆÈçÏÂÁ½·ùͳ¼Æͼ£º
¸ù¾ÝͼÖеÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©±¾´Î»î¶¯¹²ÓÐ200λÊÐÃñ²ÎÓëµ÷²é£»
£¨2£©²¹È«ÌõÐÎͳ¼Æͼ£»
£¨3£©¸ù¾Ýͳ¼Æ½á¹û£¬ÈôÊÐÇøÓÐ26ÍòÊÐÃñ£¬Çë¹ÀËãÿÌ춼Óù«¹²×ÔÐгµµÄÊÐÃñÔ¼ÓжàÉÙÈË£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Òòʽ·Ö½â£º2x2-8x4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚµÈʽy=ax2+bx+cÖУ¬µ±x=-1ʱ£¬y=-9£»µ±x=-2ʱ£¬y=-20£»µ±x=1ʱ£¬y=-4£®Çóa£¬b£¬cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸