【题目】如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2:按上述方法不断操作下去…,经过第2019次操作后得到的折痕D2018E2018,到BC的距离记为h2019:若h1=1,则h2019的值为(____)
【答案】2﹣
【解析】
根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=21=1,同理,h2=2,h3=2×=2,经过第n次操作后得到的折痕Dn1En1到BC的距离hn=2.
解:由折叠的性质可得:AA1⊥DE,DA=DA1,
又∵D是AB中点,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2h1=2,
∴h1=21=1,
同理,h2=2,h3=2×=2…
∴经过第n次操作后得到的折痕Dn1En1到BC的距离hn=2,
∴h2019=2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.
(1)列式表示每个B区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果a=40,c=10,求整个长方形运动场的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是:每分钟降低元后,再下调;乙公司推出的优惠措施是:每分钟下调后,再降低元.已知甲、乙两公司原来每分钟收费标准相同,都是元.
(1)用含,的式子表示甲、乙两公司推出优惠措施后每分钟的收费标准;
(2)推出优惠措施后哪家公司的收费便宜?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图所示,线段,点是线段上一点,分别是线段的中点,小明据此很轻松地求得;你知道小明是怎样求出来的吗?请写出求解过程.
(2)小明反思过程中突发奇想:若点在的延长线上时,原有的结论“”是否仍然成立?请帮小明画出图形并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,是平分线,的垂直平分线分别交延长线于点.求证:.
证明:∵平分
∴ (角平分线的定义)
∵垂直平分
∴ (线段垂直平分线上的点到线段两个端点距离相等)
∴( )
∴(等量代换)
∴( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com