精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,ADBCB=90°,AB=8 cmAD=24 cmBC=26 cm.点PA出发,以1 cm/s的速度向点D运动,点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQCD需要__________

【答案】67

【解析】PD=CQ时可知四边形PQCD为平行四边形或四边形PQCD为等腰梯形,根据它们的性质可建立关于t的方程,解出即可.

1)当PD=CQ时,四边形PQCD是平行四边形;

设运动时间为t秒,

24-t=3t

解得t=6s,

(2)当四边形PQCD是等腰梯形时,PQ=CD.

设运动时间为t秒,则有AP=tcm,CQ=3tcm,

BQ=26-3t,

PMBCM,DNBCN,则有NC=BC-AD=26-24=2.

∵梯形PQCD为等腰梯形,

NC=QM=2,

BM=(26-3t)+2=28-3t,

∴当AP=BM,即t=28-3t,解得t=7,

t=7时,四边形PQCD为等腰梯形.

综上所述t=6s7s时,PQ=CD.

故答案为6s7s.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将连续的奇数1、3、5、7、9,……排成如下的数表:

(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?

(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;

(3)十字框中的5个数的和能等于2018吗?若能,请写出这5个数;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.

(1)阅读并补充下面推理过程

解:过点A作ED∥BC

∴∠B=∠   ,∠C=∠   

又∵∠EAB+∠BAC+∠DAC=180°(平角定义)

∴∠B+∠BAC+∠C=180°

从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决

(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.

小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:

(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.

①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为   °.

②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为   °(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=2x+bb0)与坐标轴交于AB两点,与双曲线x0)交于D点,过点DDCx轴,垂足为G,连接OD.已知AOB≌△ACD

1)如果b=﹣2,求k的值;

2)试探究kb的数量关系,并写出直线OD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示为20137月份的日历示意图.

(1)请你计算虚线方框圈出的2×2个数(22列的4个数)的和;

(2)若方框圈出的2×2个数从左下角到右上角的2个数之和为46,则这4个数的最后一天是7   日.(直接填空)

(3)若方框圈出的2×2个数的和最大,请你用方框将这4个数圈出来,并计算这4个数的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.

(1)试求抛物线的解析式和直线AB的解析式;
(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以 个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?
(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.
(1)求这个反比例函数的解析式;
(2)四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE的度数等于

查看答案和解析>>

同步练习册答案