A. | k>$\frac{1}{2}$ | B. | 0<k<$\frac{1}{2}$ | C. | 0≤k<$\frac{1}{2}$ | D. | k<$\frac{1}{2}$ |
分析 由一次函数y=(1-2k)x+k的函数值y随x的增大而减小,则1-2k<0,而图象经过第一、二、四象限,即图象与y轴的交点在x轴的上方,则k>0,解两个不等式即可得到k的取值范围.
解答 解:如图,
∵一次函数y=(2k-1)x+k的函数值y随x的增大而减小,
∴2k-1<0,即k<$\frac{1}{2}$;
∵此函数的图象不经过第三象限,
∴图象经过第一、二、四象限,
∴k≥0;
所以k的取值范围是0≤k<$\frac{1}{2}$.
故选C.
点评 本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (x+3)(x-3) | B. | x-3 | C. | x+3 | D. | x+1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com