【题目】在平面直角坐标系中,抛物线的对称轴是直线.
(1)求抛物线的表达式;
(2)点, 在抛物线上,若,请直接写出的取值范围;
(3)设点为抛物线上的一个动点,当时,点关于轴的对称点都在直线的上方,求的取值范围.
【答案】(1);(2)或;(3)
【解析】试题分析:(1)由抛物线的对称轴方程可求得m=1,从而可求得抛物线的表达式;
(2)将x=3代入抛物线的解析式,可求得y2=3,将y=3代入抛物线的解析式可求得x1=-1,x2=3,由抛物线的开口向下,可知当n<-1或n>3时,y1<y2;
(3)先根据题意画出点M关于y轴对称点M′的轨迹,然后根据点M关于y轴的对称点都在直线y=kx-4的上方,求出最大与最小两个关于k的方程,即可求得k的取值范围.
解:(1)∵抛物线的对称轴是,
∴,
∴,
∴.
(2)将x=3代入抛物线的解析式得y=32+2×3=3,
将y=3代入得:x2+2x=3,
解得:x1=1,x2=3.
∵a=1<0,
∴当n<1或n>3时,y1<y2.
(3) 由题意得抛物线,
关于轴对称的抛物线为.,
当,
当直线经过点时,
可得;
当,
当直线经过点时,
可得的取值范围是.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.
(1)求证:△BEF是等腰三角形;
(2)求证:BD=(BC+BF).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,点B的坐标为(2m,-m).
(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<m时,y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 在学习了全等三角形和等边三角形的知识后,张老师出了如下一道题:如图,点B是线段AC上任意一点,分别以AB、BC为边在AC同一侧作等边△ABD和等边△BCE,连接CD、AE分别与BE和DB交于点N、M,连接MN.
(1)求证:△ABE≌△DBC.
接着张老师又让学生分小组进行探究:你还能得出什么结论?
精英小组探究的结论是:AM=DN.
奋斗小组探究的结论是:△EMB≌△CNB.
创新小组探究的结论是:MN∥AC.
(2)你认为哪一小组探究的结论是正确的?
(3)选择其中你认为正确的一种情形加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com