精英家教网 > 初中数学 > 题目详情
定义:a是不为1的有理数,把
1
1-a
叫做a的差倒数.如2的差倒数是
1
1-2
=-1,-1的差倒数是
1
1-(-1)
=
1
2
,设a1=3,a2是a1的差倒数,a3是a2的差倒数,…那么a2008=
 
分析:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.
解答:解:根据差倒数定义可得:a2=
1
1-a1
=
1
1-3
=-
1
2
,a3=
1
1-a2
=
1
1-(-
1
2
)
=
2
3
,a4=
1
1-a3
=
1
1-
2
3
=3.
显然每三个循环一次,又2008÷3=669余1,
故a2008和a1的值相等.
故答案为:3.
点评:本题考查了数字的变化类问题,此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-单项式乘以多项式(带解析) 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-单项式乘以多项式(解析版) 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步练习册答案