精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,二次函数y=-
1
3
x2+bx+c的图象经过点A(-1,1)和点B(2,2),该函数图象的对称轴与直线OA、OB分别交于点C和点D.
(1)b=
2
3
2
3
,c=
2
2
;对称轴是直线
x=1
x=1

(2)如果点P在直线AB上,且△POB与△BCD相似,求点P的坐标.
分析:(1)利用待定系数法求出二次函数解析式即可;
(2)先利用直线OA的表达式y=-x,得出点C的坐标为(1,-1),则AB=BC,OA=OC,再根据等腰三角形三线合一的性质得出∠ABO=∠CBO.然后分两种情况进行讨论:①∠BOP=∠BDC,②∠BOP=∠BCD,进而分析得出P点坐标即可.
解答:解:(1)根据题意得:
-
1
3
-b+c=1
-
4
3
+2b+c=2

解得:
b=
2
3
c=2

则所求的二次函数的解析式是:y=-
1
3
x2+
2
3
x+2,
对称轴是:x=1;

(2)直线OA的解析式是y=-x,得点C的坐标是(1,-1).
∵AB=
10
,BC=
10

∴AB=BC,
又∵OA=
2
,OC=
2

∴OA=OC,
∴∠ABO=∠CBO.
由直线OB的表达式y=x,得点D的坐标为(1,1).
由直线AB的表达式:y=
1
3
x+
4
3

得直线与x轴的交点E的坐标为(-4,0).
∵△POB与△BCD相似,∠ABO=∠CBO,
∴∠BOP=∠BDC或∠BOP=∠BCD.
①当∠BOP=∠BDC时,由∠BDC=135°,得∠BOP=135°.
∴点P不但在直线AB上,而且也在x轴上,即点P与点E重合.
∴点P的坐标为(-4,0).
②当∠BOP=∠BCD时,
由△BOP∽△BCD,得:
BP
BO
=
BD
BC

而BO=2
2
,BD=
2
,BC=
10

∴BP=
2
10
5

又∵BE=2
10

∴PE=
8
10
5

作PH⊥x轴,垂足是H,BF⊥x轴,垂足是F.
∵PH∥BF,
PH
BF
=
PE
BE
=
EH
EF
,而BF=2,EF=6,
∴PH=
8
5
,EH=
24
5

∴OH=
4
5

∴点P的坐标是(
4
5
8
5
).
综上所述,点P的坐标为(-4,0)或(
4
5
8
5
).
点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的性质和二次函数综合应用,利用数形结合以及分类讨论求出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案