【题目】已知:如图,抛物线y= x2+bx+c与x轴、y轴分别相交于点A( 1,0)、B(0,3)两点,其顶点为D.
(1)求这条抛物线的解析式;
(2)若抛物线与x轴的另一个交点为E. 求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短。若存在请求出P点的坐标,若不存在说明理由。
【答案】(1) y= x2+2x+3;(2)6;(3)存在,P(1,2),理由见解析
【解析】试题分析:(1)把A点和B点坐标分别代入y=-x2+bx+c得到关于b、c的方程组,然后解方程组即可;
(2)通过解方程-x2+2x+3=0得到E点坐标,再把一般式配成顶点式得到D点坐标,然后根据三角形面积公式计算△ODE的面积;连接BE交直线x=1于点P,如图,利用两点之间线段最短可判断此时PA+PB的值最小,然后求出BE的解析式后易得P点坐标.
试题解析:
(1)根据题意得
,解得
∴抛物线解析式为y=-x2+2x+3;
(2)当y=0时,-x2+2x+3=0,解得x1=-1,x2=3,则E(3,0);
y=-(x-1)2+4,则D(1,4),
∴S△ODE=×3×4=6;
连接BE交直线x=1于点P,如图,则PA=PE,
∴PA+PB=PE+PB=BE,
此时PA+PB的值最小,
易得直线BE的解析式为y=-x+3.,
当x=1时,y=-x+3=3,
∴P(1,2).
科目:初中数学 来源: 题型:
【题目】2016年G20杭州峰会期间,某志愿者小组有五名翻译,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.
(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年10月上市的某品牌手机经过连续两次降价,截至2016年3月底售价由原来的6500元/台,降至4200元/台.设平均每个季度的降价率为x,根据题意,可列出方程是( )
A.4200(1+x)2=6500
B.4200(1+2x)=6500
C.6500(1﹣x)2=4200
D.6500(1﹣2x)=4200
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,将∠MBN 绕点B 旋转.当∠MBN 旋转到如图的位置,此时∠MBN 的两边分别交 AD、DC 于 E、F,且AE≠CF.延长 DC 至点 K,使 CK=AE,连接BK.
求证:(1)△ABE≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com