【题目】如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
【答案】(1)EF=BE+DF;(2)EF=DFBE;证明见解析;(3).
【解析】
(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,首先证明F,D,G三点共线,求出∠EAF=∠GAF,然后证明△AFG≌△AFE,根据全等三角形的性质解答;
(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',首先证明E',D,F三点共线,求出∠EAF=∠E'AF,然后证明△AFE≌△AFE',根据全等三角形的性质解答;
(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',求出∠ECD'=90°,再根据勾股定理计算即可.
解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,
∵∠B+∠ADC=180°,
∴∠FDG=180°,即点F,D,G三点共线,
∵∠BAE=∠DAG,∠EAF=∠BAD,
∴∠EAF=∠GAF,
在△AFG和△AFE中,,
∴△AFG≌△AFE,
∴EF=FG=DG+DF=BE+DF;
(2)EF=DFBE;
证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',
∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,
∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,
∴∠ADE'=∠ADC,即E',D,F三点共线,
∵∠EAF=∠BAD,
∴∠E'AF=∠BAD(∠BAF+∠DAE')=∠BAD(∠BAF+∠BAE)=∠BAD∠EAF=∠BAD,
∴∠EAF=∠E'AF,
在△AEF和△AE'F中,,
∴△AFE≌△AFE'(SAS),
∴FE=FE',
又∵FE'=DFDE',
∴EF=DFBE;
(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',
同(1)可证△AED≌AED',
∴DE=D'E.
∵∠ACB=∠B=∠ACD'=45°,
∴∠ECD'=90°,
在Rt△ECD'中,ED'=,即DE=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去B.带②去C.带③去D.带①和②去
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
①甲队单独完成这项工程刚好如期完成;
②乙队单独完成这项工程要比规定日期多用6天;
③若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:规定日期是多少天?在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李对某班全体同学的业余兴趣爱好进行了一次调查,根据采集到的数据绘制了下面的统计图表.请据图中提供的信息,解答下列问题:
(1)该班共有学生_____________人;
(2)在图1中,请将条形统计图补充完整;
(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数___________度:
(4)求爱好“书画”的人数占该班学生数的百分数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B两点,则k的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b的正方形拼成的.
(1)利用正方形ABCD面积的不同表示方法,直接写出、、ab之间的关系式,这个关系式是 ;
(2)若m满足,请利用(1)中的数量关系,求的值;
(3)若将正方形EFGH的边、分别与图①中的PG、MG重叠,如图②所示,已知PF=8,NH=32,求图中阴影部分的面积(结果必须是一个具体数值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连接AD,AC,BC,BD,若AD=AC=AB,则下列结论:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等边三角形,④∠BCD的度数为150°,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠EAF的度数;
(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com