精英家教网 > 初中数学 > 题目详情

阅读、理解和探索
(1)观察下列各式:①数学公式;②数学公式;③数学公式;…用你发现的规律写出:第④个式子是(______),第n个式子是(______);
(2)利用(1)中的规律,计算:数学公式数学公式+数学公式+数学公式
(3)应用以上规律化简:数学公式+数学公式
(4)观察按规律排列一组数:数学公式,猜想第n个数是什么(请用含n的式子表达)把它填入求这组数的前n项和:数学公式(______)中的括号内,并把这个和式化简.

解:根据以上分析故(1)第④个式子是,第n个式子是
(2)解:++=

(3)解:原式===

(4)把第n项填入括号:)可得原式=

=
==
分析:根据题中所给的式子分析可得出结果.注意分母之间的关系.即=
点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

29、阅读:|5-2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5-(-2)|,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离.
探索:
(1)|5-(-2)|=
7

(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到5和-2的距离之和为7
(3)由以上探索猜想,对于任何有理数x,|x-2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

附加题阅读、理解和探索
(1)观察下列各式:①
1
1×2
=1-
1
2
;②
1
2×3
=
1
2
-
1
3
;③
1
3×4
=
1
3
-
1
4
;…用你发现的规律写出:第④个式子是(
 
),第n个式子是(
 
);
(2)利用(1)中的规律,计算:
1
1×2
+
1
2×3
+
1
3×4
+…
+
1
9×10

(3)应用以上规律化简:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+…
+
1
(n+2008)(n+2009)

(4)观察按规律排列一组数:
1
3
1
15
1
35
,…
,猜想第n个数是什么(请用含n的式子表达)把它填入求这组数的前n项和:
1
3
+
1
15
+
1
35
+…+
 
)中的括号内,并把这个和式化简.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

22、阅读理解:
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读:|5-2|表示5与2的绝对值,也可理解为5与2两位数在数轴上所对应的两点之间的距离;|5+2|可以看做|5-(-2)|,表示5与-2的差的绝对值,也可理解为5与-2两位数在数轴上所对应的两点之间的距离.
探索:
(1)|5-(-2)|=
7
7

(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到5和-2的距离之和为7.

查看答案和解析>>

同步练习册答案