【题目】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,
求(1)∠DBC的度数;(2)弦AD的长度.
【答案】(1) 30;(2) .
【解析】
(1)由AB=AC,可得,进而OA⊥BC,证明△OAB是等边三角形,由等边三角形三线合一可得∠DBC=∠OBA=30°;
(2)由直角三角形中30度角所对的边是斜边的一半可得OA=OD=6,由三角形外角的性质得∠OAD=∠ODA=30°,过O作OF⊥AD于点F,在中由勾股定理可得AF的值,进而可得AD值.
(1)∵AB=AC,
∴,
∴OA⊥BC,
∴∠BAE=∠CAE=60°,BE=EC,
∵OA=OB,
∴△OAB是等边三角形,
∴∠OBA=60°,
∵BE⊥OA,
∴∠DBC=∠OBA=30°;
(2)∵BD为⊙O的直径,CD=6,∠DBC =30°,
BD=2CD=12,OA=OD=6,
∴∠OAD=∠ODA,
∵∠OAD+∠ODA=∠AOB=60°,
∴∠OAD=∠ODA=30°,
过O作OF⊥AD于点F,则AF=DF,
在中,OA=6,∠OAF=30°,
∴OF=3,
∴=,
∴AD=2AF=
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(为常数,且)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(为大于l的常数).记△CEF的面积为,△OEF的面积为,则 =________. (用含的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.
(1)求k和n的值;
(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E ,则△ABE面积的最小值是 _____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB=AC,D是优弧BC上的一个动点,连结AD交BC于点E,连结BD.
(1)若AE=2,DE=8,求AC的长;
(2)若D是优弧BC上中点时,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.
(1)求组成的两位数是奇数的概率;
(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C地在A地的正东方向,因有大山阻隔.由A地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A地130km,C地位于B地南偏东30°方向.若打通穿山隧道.建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)
(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com