【题目】探究题
【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(1)【探究展示】
直接写出AM、AD、MC三条线段的数量关系:;
(2)【拓展延伸】
AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
【答案】
(1)AM=AD+MC
(2)
AM=DE+BM成立.
证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
∵四边形ABCD是正方形,
∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,
∴∠FAE=90°.
∴∠FAB=90°﹣∠BAE=∠DAE.
在△ABF和△ADE中,
∴△ABF≌△ADE(ASA).
∴BF=DE,∠F=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠FAB
=∠FAM.
∴∠F=∠FAM.
∴AM=FM.
∴AM=FB+BM=DE+BM.
(3)
①结论AM=AD+MC仍然成立.
证明:延长AE、BC交于点P,如图2(1),
∵四边形ABCD是矩形,
∴AD∥BC.
∴∠DAE=∠EPC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠EPC=∠MAE.
∴MA=MP.
在△ADE和△PCE中,
∴△ADE≌△PCE(AAS).
∴AD=PC.
∴MA=MP=PC+MC
=AD+MC.
②结论AM=DE+BM不成立.
证明:假设AM=DE+BM成立.
过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
∵四边形ABCD是矩形,
∴∠BAD=∠D=∠ABC=90°,AB∥DC.
∵AQ⊥AE,
∴∠QAE=90°.
∴∠QAB=90°﹣∠BAE=∠DAE.
∴∠Q=90°﹣∠QAB
=90°﹣∠DAE
=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠QAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB
=∠QAM.
∴∠Q=∠QAM.
∴AM=QM.
∴AM=QB+BM.
∵AM=DE+BM,
∴QB=DE.
在△ABQ和△ADE中,
∴△ABQ≌△ADE(AAS).
∴AB=AD.
与条件“AB≠AD“矛盾,故假设不成立.
∴AM=DE+BM不成立
【解析】证明:延长AE、BC交于点N,如图1(1),
∵四边形ABCD是正方形,
∴AD∥BC.
∴∠DAE=∠ENC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠ENC=∠MAE.
∴MA=MN.
在△ADE和△NCE中,
∴△ADE≌△NCE(AAS).
∴AD=NC.
∴MA=MN=NC+MC
=AD+MC.
科目:初中数学 来源: 题型:
【题目】据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,线段A'B'是由线段AB经过平移得到的,已知点A(2,1)的对应点为A'(3,1),点B的对应点为B'(4,0),则点B的坐标为( )
A.(9,2)B.(1,2)C.(1,3)D.(1,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com