精英家教网 > 初中数学 > 题目详情
下列方程中,满足两个实数根的和为2的方程是(  )
A.2x2-4=0B.2x2-4x-1=0C.x2-2x+2=0D.x2+2 x-2=0
A、x1+x2=0,所以A选项错误;
B、x1+x2=2,所以B选项正确;
C、△=4-4×2<0,方程没有实数根,所以C选项错误;
D、x1+x2=-2,所以D选项错误.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:

增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.
阅读以上材料后,完成下列探究:
探究1:m为何值时,方程
3x
x-3
+5=
m
3-x
有增根.
探究2:m为何值时,方程
3x
x-3
+5=
m
3-x
的根是-1.
探究3:任意写出三个m的值,使对应的方程
3x
x-3
+5=
m
3-x
的三个根中两个根之和等于第三个根;
探究4:你发现满足“探究3”条件的m1、m2、m3的关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列方程中,满足两个实数根的和为2的方程是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

下列方程中,满足两个实数根的和为2的方程是


  1. A.
    2x2-4=0
  2. B.
    2x2-4x-1=0
  3. C.
    x2-2x+2=0
  4. D.
    x2+2 x-2=0

查看答案和解析>>

同步练习册答案